
Care and Feeding of Netperf
Versions 2.4.0 and Later

Rick Jones rick.jones2@hp.com

mailto:rick.jones2@hp.com

This is Rick Jones' feeble attempt at a Texinfo-based manual for the netperf benchmark.
Copyright c
 2005 Hewlett-Packard Company

Permission is granted to copy, distribute and/or modify this document per the
terms of the netperf source licence, a copy of which can be found in the �le
`COPYING' of the basic netperf distribution.

i

Table of Contents

1 Introduction . 1
1.1 Conventions . 1

2 Installing Netperf . 3
2.1 Getting Netperf Bits . 3
2.2 Installing Netperf . 3
2.3 Verifying Installation . 5

3 The Design of Netperf . 6
3.1 CPU Utilization . 6

4 Global Command-line Options 9
4.1 Command-line Options Syntax . 9
4.2 Global Options . 9

5 Using Netperf to Measure Bulk Data Transfer
. 15

5.1 Issues in Bulk Transfer . 15
5.2 Options common to TCP UDP and SCTP tests 16

5.2.1 TCP STREAM . 17
5.2.2 TCP MAERTS . 18
5.2.3 TCP SENDFILE . 18
5.2.4 UDP STREAM . 19
5.2.5 XTI TCP STREAM . 19
5.2.6 XTI UDP STREAM . 19
5.2.7 SCTP STREAM . 20
5.2.8 DLCO STREAM . 20
5.2.9 DLCL STREAM . 20
5.2.10 STREAM STREAM . 21
5.2.11 DG STREAM . 21

6 Using Netperf to Measure Request/Response
. 22

6.1 Issues in Reqeust/Response . 22
6.2 Options Common to TCP UDP and SCTP RR tests 23

6.2.1 TCP RR . 24
6.2.2 TCP CC . 25
6.2.3 TCP CRR . 25
6.2.4 UDP RR . 25
6.2.5 XTI TCP RR . 26
6.2.6 XTI TCP CC . 26

ii

6.2.7 XTI TCP CRR . 26
6.2.8 XTI UDP RR . 26
6.2.9 DLCL RR . 26
6.2.10 DLCO RR . 26
6.2.11 SCTP RR . 26

7 Other Netperf Tests . 27
7.1 CPU rate calibration . 27

8 Address Resolution . 28

9 Enhancing Netperf. 29

Index . 30

Chapter 1: Introduction 1

1 Introduction

Netperf is a benchmark that can be use to measure various aspect of networking perfor-
mance. The primary foci are bulk (aka unidirectional) data transfer and request/response
performance using either TCP or UDP and the Berkeley Sockets interface. As of this
writing, the tests available either unconditionally or conditionally include:
� TCP and UDP unidirectional transfer and request/response over IPv4 and IPv6 using

the Sockets interface.
� TCP and UDP unidirectional transfer and request/response over IPv4 using the XTI

interface.
� Link-level unidirectional transfer and request/response using the DLPI interface.
� Unix domain sockets
� SCTP unidirectional transfer and request/response over IPv4 and IPv6 using the sock-

ets interface.
While not every revision of netperf will work on every platform listed, the intention is

that at least some version of netperf will work on the following platforms:
� Unix - at least all the major variants.
� Linux
� Windows
� OpenVMS
� Others
Netperf is maintained and informally supported primarily by Rick Jones, who can per-

haps be best described as Netperf Contributing Editor. Non-trivial and very appreciated
assistance comes from others in the network performance community, who are too numerous
to mention here. Netperf is NOT supported via any of the formal Hewlett-Packard support
channels. You should feel free to make enhancements and modi�cations to netperf to suit
your nefarious porpoises, so long as you stay within the guidelines of the netperf copyright.
If you feel so inclined, you can send your changes to netperf-feedback for possible inclusion
into subsequent versions of netperf.

The netperf-talk mailing list is available to discuss the care and feeding of netperf
with others who share your interest in network performance benchmarking. The netperf-
talk mailing list is a closed list and you must �rst subscribe by sending email to net-
perf-talk-request.

1.1 Conventions
A sizespec is a one or two item, comma-separated list used as an argument to a command-
line option that can set one or two, related netperf parameters. If you wish to set both
parameters to separate values, items should be separated by a comma:

parameter1,parameter2
If you wish to set the �rst parameter without altering the value of the second from its

default, you should follow the �rst item with a comma:
parameter1,

Likewise, precede the item with a comma if you wish to set only the second parameter:

mailto:netperf-feedback@netperf.org
mailto:netperf-talk@netperf.org
mailto:netperf-talk-request@netperf.org
mailto:netperf-talk-request@netperf.org

Chapter 1: Introduction 2

,parameter2
An item with no commas:

parameter1and2
will set both parameters to the same value. This last mode is one of the most frequently

used.
There is another variant of the comma-separated, two-item list called a optionspec which

is like a sizespec with the exception that a single item with no comma:
parameter1

will only set the value of the �rst parameter and will leave the second parameter at its
default value.

Netperf has two types of command-line options. The �rst are global command line
options. They are essentially any option not tied to a particular test or group of tests. An
example of a global command-line option is the one which sets the test type - `-t'.

The second type of options are test-speci�c options. These are options which are only
applicable to a particular test or set of tests. An example of a test-speci�c option would be
the send socket bu�er size for a TCP STREAM test.

Global command-line options are speci�ed �rst with test-speci�c options following after
a -- as in:

netperf <global> -- <test-specific>

Chapter 2: Installing Netperf 3

2 Installing Netperf

Netperf's primary form of distribution is source code. This allows installation on systems
other than those to which the authors have ready access and thus the ability to create
binaries. There are two styles of netperf installation. The �rst runs the netperf server
program - netserver - as a child of inetd. This requires the installer to have su�cient
privileges to edit the �les `/etc/services' and `/etc/inetd.conf' or their platform-speci�c
equivalents.

The second style is to run netserver as a standalone daemon. This second method does
not require edit privileges on `/etc/services' and `/etc/inetd.conf' but does mean you
must remember to run the netserver program explicitly after every system reboot.

This manual assumes that those wishing to measure networking performance already
know how to use anonymous FTP and/or a web browser. It is also expected that you have
at least a passing familiarity with the networking protocols and interfaces involved. In all
honesty, if you do not have such familiarity, likely as not you have some experience to gain
before attempting network performance measurements. The excellent texts by authors such
as Stevens, Fenner and Rudo� and/or Stallings would be good starting points. There are
likely other excellent sources out there as well.

2.1 Getting Netperf Bits
Gzipped tar �les of netperf sources can be retrieved via anonymous FTP for \released"
versions of the bits. Pre-release versions of the bits can be retrieved via anonymous FTP
from the experimental subdirectory.

For convenience and ease of remembering, a link to the download site is provided via
the NetperfPage

There are likely other places around the Internet from which one can download netperf
bits. These may be simple mirrors of the main Netperf site, or they may be local variants
on netperf. As with anything one downloads from the Internet, take care to make sure it is
what you really wanted and isn't some malicious Trojan or whatnot. Caveat downloader.

As a general rule, binaries of netperf and netserver are not distributed from
ftp.cup.hp.com. From time to time a kind soul or souls has packaged netperf as a Debian
package available via the apt-get mechanism. I would be most interested in learning how
to enhance the make�les to make that easier for people, and perhaps to generate RPM's
and HP-UX swinstall\depots"

2.2 Installing Netperf
Once you have downloaded the tar �le of netperf sources onto your system(s), it is necessary
to unpack the tar �le, cd to the netperf directory, run con�gure and then make. Most of
the time it should be su�cient to just:

gzcat <netperf-version>.tar.gz | tar xf -
cd <netperf-version>
./configure
make
make install

ftp://ftp.cup.hp.com/dist/networking/benchmarks/netperf/
ftp://ftp.cup.hp.com/dist/networking/benchmarks/netperf/experimental/
http://www.netperf.org/

Chapter 2: Installing Netperf 4

Most of the \usual" con�gure script options should be present dealing with where to
install binaries and whatnot.

./configure --help
should list all of those and more.
If the netperf con�gure script does not know how to automagically detect which

CPU utilization mechanism to use on your platform you may want to add a --enable-
cpuutil=mumble option to the con�gure command. If you have knowledge and/or
experience to contribute to that area, feel free to contact netperf-feedback@netperf.org.

Similarly, if you want tests using the XTI interface, Unix Domain Sockets, DLPI or SCTP
it will be necessary to add one or more --enable-[xti|unix|dlpi|sctp]=yes options to
the con�gure command. As of this writing, the con�gure script will not include those tests
automagically.

On some platforms, it may be necessary to precede the con�gure command with a
CFLAGS and/or LIBS variable as the netperf con�gure script is not yet smart enough
to set them itself. In particular, for Solaris, it will be necessary to add LIBS="-lsocket -
lnsl -lkstat" in front of the con�gure command. If asking for SCTP tests on Solaris, that
needs to be CFLAGS="-D_XOPEN_SOURCE=500 -D__EXTENSIONS__" LIBS="-lxnet -lsocket
-lnsl -lkstat" in front of the con�gure command. Expertise and assistance in making
that more automagical in the con�gure script would be most welcome.

Other optional con�gure-time settings include --enable-intervals=yes to give netperf
the ability to \pace" its STREAM tests and --enable-histogram=yes to have netperf
keep a histogram of interesting times. Each of these will have some e�ect on the measured
result. If your system supports gethrtime() the e�ect of the histogram measurement
should be minimized but probably still measurable. For example, the histogram of a netperf
TCP RR test will be of the individual transaction times:

netperf -t TCP_RR -H lag -v 2
TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to lag.hpl.hp.com (15.4.89.214) port 0 AF_INET : histogram
Local /Remote
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec

16384 87380 1 1 10.00 3538.82
32768 32768
Alignment Offset
Local Remote Local Remote
Send Recv Send Recv

8 0 0 0
Histogram of request/response times
UNIT_USEC : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0
TEN_USEC : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0
HUNDRED_USEC : 0: 34480: 111: 13: 12: 6: 9: 3: 4: 7
UNIT_MSEC : 0: 60: 50: 51: 44: 44: 72: 119: 100: 101
TEN_MSEC : 0: 105: 0: 0: 0: 0: 0: 0: 0: 0
HUNDRED_MSEC : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0

mailto:netperf-feedback@netperf.org

Chapter 2: Installing Netperf 5

UNIT_SEC : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0
TEN_SEC : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0
>100_SECS: 0
HIST_TOTAL: 35391

Long-time users of netperf will notice the expansion of the main test header. This stems
from the merging-in of IPv6 with the standard IPv4 tests and the addition of code to specify
addressing information for both sides of the data connection.

The histogram you see above is basically a base-10 log histogram where we can see that
most of the transaction times were on the order of one hundred to one-hundred, ninety-nine
microseconds, but they were occasionally as long as ten to nineteen milliseconds

As of this writing, a make install will not actually update the �les `/etc/services'
and/or `/etc/inetd.conf' or their platform-speci�c equivalents. It remains necessary to
perform that bit of installation magic by hand. Patches to the make�le sources to e�ect an
automagic editing of the necessary �les to have netperf installed as a child of inetd would
be most welcome.

Starting the netserver as a standalone daemon should be as easy as:
$ netserver
Starting netserver at port 12865
Starting netserver at hostname 0.0.0.0 port 12865 and family 0

Over time the speci�cs of the messages netserver prints to the screen may change but
the gist will remain the same.

If the compilation of netperf or netserver happens to fail, feel free to contact
netperf-feedback@netperf.org or join and ask in netperf-talk@netperf.org.
However, it is quite important that you include the actual compilation errors and perhaps
even the con�gure log in your email. Otherwise, it will be that much more di�cult for
someone to assist you.

2.3 Verifying Installation
Basically, once netperf is installed and netserver is con�gured as a child of inetd, or launched
as a standalone daemon, simply typing:

netperf
should result in output similar to the following:

$ netperf
TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost.localdomain (127.0.0.1) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

87380 16384 16384 10.00 2997.84

mailto:netperf-feedback@netperf.org
mailto:netperf-talk@netperf.org

Chapter 3: The Design of Netperf 6

3 The Design of Netperf

Netperf is designed around a basic client-server model. There are two executables - netperf
and netserver. Generally you will only execute the netperf program, with the netserver
program being invoked by the remote system's inetd or equivalent. When you execute
netperf, the �rst that that will happen is the establishment of a control connection to the
remote system. This connection will be used to pass test con�guration information and
results to and from the remote system. Regardless of the type of test to be run, the control
connection will be a TCP connection using BSD sockets. The control connection can use
either IPv4 or IPv6.

Once the control connection is up and the con�guration information has been passed,
a separate \data" connection will be opened for the measurement itself using the API's
and protocols appropriate for the speci�ed test. When the test is completed, the data
connection will be torn-down and results from the netserver will be passed-back via the
control connection and combined with netperf's result for display to the user.

Netperf places no tra�c on the control connection while a test is in progress. Certain
TCP options, such as SO KEEPALIVE, if set as your systems' default, may put packets
out on the control connection while a test is in progress. Generally speaking this will have
no e�ect on the results.

3.1 CPU Utilization
CPU utilization is an important, and alas all-too infrequently reported component of net-
working performance. Unfortunately, it can be one of the most di�cult metrics to measure
accurately.

CPU utilization in netperf is reported as a value between 0 and 100% regardless of the
number of CPUs involved. In addition to CPU utilization, netperf will report a metric
called a service demand. The service demand is the normalization of CPU utilization and
work performed. For a STREAM test it is the microseconds of CPU time consumed to
transfer on KB (K == 1024) of data. For a RR test it is the microseconds of CPU time
consumed processing a single transaction. For both CPU utilization and service demand,
lower is better.

Service demand can be particularly useful when trying to gauge the e�ect of a perfor-
mance change. It is essentially a measure of e�ciency, with smaller values being more
e�cient.

Netperf is coded to be able to use one of several, sometimes platform-speci�c CPU uti-
lization measurement mechanisms. Single letter codes will be included in the CPU portion
of the test banner to indicate which mechanism was used on each of the local (netperf) and
remote (netserver) system.

As of this writing those codes are:
U The CPU utilization measurement mechanism was unknown to netperf or

netperf/netserver was not compiled to include CPU utilization measurements.
The code for the null CPU utilization mechanism can be found in
`src/netcpu_none.c'.

Chapter 3: The Design of Netperf 7

I An HP-UX-speci�c CPU utilization mechanism whereby the kernel incremented
a per-CPU counter by one for each trip through the idle loop. This mechanism
was only available on specially-compiled HP-UX kernels prior to HP-UX 10 and
is mentioned here only for the sake of historical completeness and perhaps as
a suggestion to those who might be altering other operating systems. While
rather simple, perhaps even simplistic, this mechanism was quite robust and
was not a�ected by the concerns of statistical methods, or methods attempting
to track time in each of user, kernel, interrupt and idle modes which require
quite careful accounting. It can be thought-of as the in-kernel version of the
looper L mechanism without the context switch overhead. This mechanism
required calibration.

P An HP-UX-speci�c CPU utilization mechanism whereby the kernel keeps-track
of time (in the form of CPU cycles) spent in the kernel idle loop (HP-UX 10.0
to 11.23 inclusive), or where the kernel keeps track of time spent in idle, user,
kernel and interrupt processing (HP-UX 11.23 and later). The former requires
calibration, the latter does not. Values in either case are retrieved via one of
the pstat(2) family of calls, hence the use of the letter P. The code for these
mechanisms is found in `src/netcpu_pstat.c' and `src/netcpu_pstatnew.c'
respectively.

K A Solaris-speci�c CPU utilization mechanism where by the kernel keeps track of
ticks (eg HZ) spent in the idle loop. This method is statistical and is known to
be inaccurate when the interrupt rate is above epsilon as time spent processing
interrupts is not subtracted from idle. The value is retrieved via a kstat() call
- hence the use of the letter K. Since this mechanism uses units of ticks (HZ)
the calibration value should invariably match HZ. (Eg 100) The code for this
mechanism is implemented in `src/netcpu_kstat.c'.

M A Solaris-speci�c mechanism available on Solaris 10 and latter which uses the
new microstate accounting mechanisms. There are two, alas, overlapping, mech-
anisms. The �rst tracks nanoseconds spent in user, kernel, and idle modes. The
second mechanism tracks nanoseconds spent in interrupt. Since the mechanisms
overlap, netperf goes through some hand-waving to try to \�x" the problem.
Since the accuracy of the handwaving cannot be completely determined, one
must presume that while better than the K mechanism, this mechanism too is
not without issues. The values are retrieved via kstat() calls, but the letter code
is set to M to distinguish this mechanism from the even less accurate K mecha-
nism. The code for this mechanism is implemented in `src/netcpu_kstat10.c'.

L A mechanism based on \looper"or \soaker" processes which sit in tight loops
counting as fast as they possibly can. This mechanism starts a looper process for
each known CPU on the system. The e�ect of processor hyperthreading on the
mechanism is not yet known. This mechanism de�nitely requires calibration.
The code for the \looper"mechanism can be found in `src/netcpu_looper.c'

N A Microsoft Windows-speci�c mechanism, the code for which can be found in
`src/netcpu_ntperf.c'. This mechanism too is based on what appears to be
a form of micro-state accounting and requires no calibration.

Chapter 3: The Design of Netperf 8

S This mechanism uses `/proc/stat' on Linux to retrieve time (ticks) spent in
idle mode. It is thought but not known to be reasonably accurate. The code
for this mechanism can be found in `src/netcpu_procstat.c'.

C A mechanism somewhat similar to S but using the sysctl() call on BSD-like
Operating systems (*BSD and MacOS X). The code for this mechanism can be
found in `src/netcpu_sysctl.c'.

Others Other mechanisms included in netperf in the past have included using the
times() and getrusage() calls. These calls are actually rather poorly suited to
the task of measuring CPU overhead for networking as they tend to be process-
speci�c and much network-related processing can happen outside the context
of a process, in places where it is not a given it will be charged to the correct, or
even a process. They are mentioned here as a warning to anyone seeing those
mechanisms used in other networking benchmarks. These mechanisms are not
available in netperf 2.4.0 and later.

For many platforms, the con�gure script will chose the best available CPU utilization
mechanism. However, some platforms have no particularly good mechanisms. On those
platforms, it is probably best to use the \LOOPER" mechanism which is basically some
number of processes (as many as there are processors) sitting in tight little loops counting
as fast as they can. The rate at which the loopers count when the system is believed to be
idle is compared with the rate when the system is running netperf and the ratio is used to
compute CPU utilization.

In the past, netperf included some mechanisms that only reported CPU time charged
to the calling process. Those mechanisms have been removed from netperf versions 2.4.0
and later because they are hopelessly inaccurate. Networking can and often results in CPU
time being spent in places - such as interrupt contexts - that do not get charged to a or the
correct process.

In fact, time spent in the processing of interrupts is a common issue for many CPU
utilization mechanisms. In particular, the \PSTAT" mechanism was eventually known to
have problems accounting for certain interrupt time prior to HP-UX 11.11 (11iv1). HP-UX
11iv1 and later are known to be good. The \KSTAT" mechanism is known to have problems
on all versions of Solaris up to and including Solaris 10. Even the microstate accounting
available via kstat in Solaris 10 has issues, though perhaps not as bad as those of prior
versions.

The /proc/stat mechanism under Linux is in what the author would consider an \un-
certain" category as it appears to be statistical, which may also have issues with time spent
processing interrupts.

In summary, be sure to \sanity-check" the CPU utilization �gures with other mecha-
nisms. However, platform tools such as top, vmstat or mpstat are often based on the same
mechanisms used by netperf.

Chapter 4: Global Command-line Options 9

4 Global Command-line Options

This section describes each of the global command-line options available in the netperf and
netserver binaries. Essentially, it is an expanded version of the usage information displayed
by netperf or netserver when invoked with the `-h' global command-line option.

4.1 Command-line Options Syntax
Revision 1.8 of netperf introduced enough new functionality to overrun the English alphabet
for mnemonic command-line option names, and the author was not and is not quite ready
to switch to the contemporary `--mumble' style of command-line options. (Call him a
Luddite).

For this reason, the command-line options were split into two parts - the �rst are the
global command-line options. They are options that a�ect nearly any and every test type
of netperf. The second type are the test-speci�c command-line options. Both are entered
on the same command line, but they must be separated from one another by a \{" for
correct parsing. Global command-line options come �rst, followed by the \{" and then
test-speci�c command-line options. If there are no test-speci�c options to be set, the \{"
may be omitted. If there are no global command-line options to be set, test-speci�c options
must still be preceded by a \{" For example:

netperf <global> -- <test-specific>
sets both global and test-speci�c options:

netperf <global>
sets just global options and:

netperf -- <test-specific>
sets just test-speci�c options.

4.2 Global Options
-a <sizespec>

This option allows you to alter the alignment of the bu�ers used in the sending
and receiving calls on the local system.. Changing the alignment of the bu�ers
can force the system to use di�erent copy schemes, which can have a measurable
e�ect on performance. If the page size for the system were 4096 bytes, and you
want to pass page-aligned bu�ers beginning on page boundaries, you could use
`-a 4096'. By default the units are bytes, but su�x of \G," \M," or \K" will
specify the units to be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively. A su�x
of \g," \m" or \k" will specify units of 10^9, 10^6 or 10^3 bytes respectively.
[Default: 8 bytes]

-A <sizespec>
This option is identical to the `-a' option with the di�erence being it a�ects
alignments for the remote system.

-b <size> This option is only present when netperf has been con�gure with {enable-
intervals=yes prior to compilation. It sets the size of the burst of send calls in
a STREAM test. When used in conjunction with the `-w' option it can cause
the rate at which data is sent to be \paced."

Chapter 4: Global Command-line Options 10

-c [rate] This option will ask that CPU utilization and service demand be calculated
for the local system. For those CPU utilization mechanisms requiring calibra-
tion, the options rate parameter may be speci�ed to preclude running another
calibration step, saving 40 seconds of time. For those CPU utilization mecha-
nisms requiring no calibration, the optional rate parameter will be utterly and
completely ignored. [Default: no CPU measurements]

-C [rate] This option requests CPU utilization and service demand calculations for the
remote system. It is otherwise identical to the `-c' option.

-d Each instance of this option will increase the quantity of debugging output
displayed during a test. If the debugging output level is set high enough, it may
have a measurable e�ect on performance. Debugging information for the local
system is printed to stdout. Debugging information for the remote system is
sent by default to the �le /tmp/netperf.debug. [Default: no debugging output]

-f G|M|K|g|m|k
This option can be used to change the reporting units for STREAM tests.
Arguments of \G," \M," or \K" will set the units to 2^30, 2^20 or 2^10 bytes/s
respectively (EG power of two GB, MB or KB). Arguments of \g," \,m" or \k"
will set the units to 10^9, 10^6 or 10^3 bits/s respectively. [Default: 'm' or
10^6 bits/s]

-F <fillfile>
This option speci�ed the �le from which send which bu�ers will be pre-�lled
. While the bu�ers will contain data from the speci�ed �le, the �le is not
fully transfered to the remote system as the receiving end of the test will not
write the contents of what it receives to a �le. This can be used to pre-�ll the
send bu�ers with data having di�erent compressibility and so is useful when
measuring performance over mechanisms which perform compression.
While optional for most tests, this option is required for a test utilizing the
send�le() or related calls because send�le tests need a name of a �le to reference.

-h This option causes netperf to display its usage string and exit to the exclusion
of all else.

-H <optionspec>
This option will set the name of the remote system and or the address family
used for the control connection. For example:

-H linger,4
will set the name of the remote system to \tardy" and tells netperf to use IPv4
addressing only.

-H ,6
will leave the name of the remote system at its default, and request that only
IPv6 addresses be used for the control connection.

-H lag
will set the name of the remote system to \lag" and leave the address family
to AF UNSPEC which means selection of IPv4 vs IPv6 is left to the system's
address resolution.

Chapter 4: Global Command-line Options 11

A value of \inet" can be used in place of \4" to request IPv4 only addressing.
Similarly, a value of \inet6" can be used in place of \6" to request IPv6 only
addressing. A value of \0" can be used to request either IPv4 or IPv6 addressing
as name resolution dictates.
By default, the options set with the global `-H' option are inherited by the test
for their data connections, unless a test-speci�c `-H' option is speci�ed.
If a `-H' option follows either the `-4' or `-6' options, the family setting speci�ed
with the -H option will override the `-4' or `-6' options for the remote address
family. If no address family is speci�ed, settings from a previous `-4' or `-6'
option will remain. In a nutshell, the last explicit global command-line option
wins.
[Default: \localhost" for the remote name/IP address and \0" (eg
AF UNSPEC) for the remote address family.]

-L <optionspec>
This option is identical to the `-H' option with the di�erence being it sets
the local hostname/IP and/or address family information. This option is
generally unnecessary, but can be useful when you wish to make sure that the
netperf control and data connections go via di�erent paths. It can also come-in
handy if one is trying to run netperf through those evil, end-to-end breaking
things known as �rewalls.
[Default: 0.0.0.0 (eg INADDR ANY) for IPv4 and ::0 for IPv6 for the local
name. AF UNSPEC for the local address family.]

-I <optionspec>
This option enables the calculation of con�dence intervals and sets the con�-
dence and width parameters with the �rst have of the optionspec being either
99 or 95 for 99% or 95% con�dence respectively. The second value of the op-
tionspec speci�es the width of the desired con�dence interval. For example

-I 99,5
asks netperf to be 99% con�dent that the measured mean values for throughput
and CPU utilization are within +/- 2.5% of the \real" mean values. If the `-i'
option is speci�ed and the `-I' option is omitted, the con�dence defaults to
99% and the width to 5% (giving +/- 2.5%)
If netperf calculates that the desired con�dence intervals have not been met, it
emits a noticeable warning.

-i <sizespec>
This option enables the calculation of con�dence intervals and sets the minimum
and maximum number of iterations to run in attempting to achieve the desired
con�dence interval. The �rst value sets the maximum number of iterations to
run, the second, the minimum. The maximum number of iterations is silently
capped at 30 and the minimum is silently
oored at 3. Netperf repeats the
measurement the minimum number of iterations and continues until it reaches
either the desired con�dence interval, or the maximum number of iterations,
whichever comes �rst.

Chapter 4: Global Command-line Options 12

If the `-I' option is speci�ed and the `-i' option omitted the maximum number
of iterations is set to 10 and the minimum to three.
If netperf determines that the desired con�dence intervals have not been met,
it emits a noticeable warning.

-l testlen
This option controls the length of any one iteration of the requested test. A
positive value for testlen will run each iteration of the test for at least testlen
seconds. A negative value for testlen will run each iteration for the absolute
value of testlen transactions for a RR test or bytes for a STREAM test.
Certain tests, notably those using UDP can only be timed, they cannot be
limited by transaction or byte count.
In some situations, individual iterations of a test may run for longer for the
number of seconds speci�ed by the `-l' option. In particular, this may occur
for those tests where the socket bu�er size(s) are signi�cantly longer than the
bandwidthXdelay product of the link(s) over which the data connection passes,
or those tests where there may be non-trivial numbers of retransmissions.

-n numcpus
This option tells netperf how many CPUs it should ass-u-me are active on the
system running netperf. In particular, this is used for the CPU utilization
calculations. On certain systems, netperf is able to determine the number of
CPU's automagically. This option will override any number netperf might be
able to determine on its own.
Note that this option does not set the number of CPUs on the system running
netserver. That can only be set via a netserver `-n' command-line option.

-o <sizespec>
The value(s) passed-in with this option will be used as an o�set added to the
alignment speci�ed with the `-a' option. For example:

-o 3 -a 4096
will cause the bu�ers passed to the local send and receive calls to begin three
bytes past an address aligned to 4096 bytes. [Default: 0 bytes]

-O <sizespec>
This option behaves just as the `-o' option by on the remote system and in
conjunction with the `-A' option. [Default: 0 bytes]

-p <optionspec>
The �rst value of the optionspec passed-in with this option tells netperf the
port number at which it should expect the remote netserver to be listening for
control connections. The second value of the optionspec will request netperf to
bind to that local port number before establishing the control connection. For
example

-p 12345
tells netperf that the remote netserver is listening on port 12345 and leaves
selection of the local port number for the control connection up to the local
TCP/IP stack whereas

Chapter 4: Global Command-line Options 13

-p ,32109
leaves the remote netserver port at the default value of 12865 and causes net-
perf to bind to the local port number 32109 before connecting to the remote
netserver.
In general, setting the local port number is only necessary when one is looking
to run netperf through those evil, end-to-end breaking things known as �rewalls.

-P 0|1 A value of \1" for the `-P' option will enable display of the test banner. A value
of \0" will disable display of the test banner. One might want to disable display
of the test banner when running the same basic test type (eg TCP STREAM)
multiple times in succession where the test banners would then simply be redun-
dant and unnecessarily clutter the output. [Default: 1 - display test banners]

-t testname
This option is used to tell netperf which test you wish to run. As of this writing,
valid values for testname include:
� Section 5.2.1 [TCP STREAM], page 17, Section 5.2.2 [TCP MAERTS],

page 18, Section 5.2.3 [TCP SENDFILE], page 18, Section 6.2.1
[TCP RR], page 24, Section 6.2.3 [TCP CRR], page 25, Section 6.2.2
[TCP CC], page 25

� Section 5.2.4 [UDP STREAM], page 19, Section 6.2.4 [UDP RR], page 25
� Section 5.2.5 [XTI TCP STREAM], page 19, Section 6.2.5

[XTI TCP RR], page 26, Section 6.2.7 [XTI TCP CRR], page 26,
Section 6.2.6 [XTI TCP CC], page 26

� Section 5.2.6 [XTI UDP STREAM], page 19, Section 6.2.8
[XTI UDP RR], page 26

� Section 5.2.7 [SCTP STREAM], page 20, Section 6.2.11 [SCTP RR],
page 26

� Section 5.2.8 [DLCO STREAM], page 20, Section 6.2.10 [DLCO RR],
page 26, Section 5.2.9 [DLCL STREAM], page 20, Section 6.2.9
[DLCL RR], page 26

� Chapter 7 [Other Netperf Tests], page 27, Chapter 7 [Other Netperf Tests],
page 27

Not all tests are always compiled into netperf. In particular, the \XTI,"
\SCTP," \UNIX," and \DL*" tests are only included in netperf when con-
�gured with `--enable-[xti|sctp|unix|dlpi]=yes'.
Netperf only runs one type of test no matter how many `-t' options may be
present on the command-line. The last `-t' global command-line option will
determine the test to be run.

-v verbosity
This option controls how verbose netperf will be in its output, and is often used
in conjunction with the `-P' option. If the verbosity is set to a value of \0"
then only the test's SFM (Single Figure of Merit) is displayed. If local CPU
utilization is requested via the `-c' option then the SFM is the local service
demand. If remote CPU utilization is requested via the `-C' option then the

Chapter 4: Global Command-line Options 14

SFM is the remote service demand. Otherwise, the SFM will be the measured
throughput or transaction rate.
If the verbosity level is set to \1" then the \normal" netperf result output for
each test is displayed.
If the verbosity level is set to \2" then \extra" information will be displayed.
This may include, but is not limited to the number of send or recv calls made
and the average number of bytes per send or recv call, or a histogram of the
time spent in each send() call or for each transaction if netperf was con�gured
with `--enable-histogram=yes'. [Default: 1 - normal verbosity]

-w time If netperf was con�gured with `--enable-intervals=yes' then this value will
set the inter-burst time to time milliseconds, and the `-b' option will set the
number of sends per burst. The actual inter-burst time may vary depending on
the system's timer resolution.

-W <sizespec>
This option controls the number of bu�ers in the send (�rst or only value) and
or receive (second or only value) bu�er rings. Unlike some benchmarks, netperf
does not continuously send or receive from a single bu�er. Instead it sends from
and receives rotating through a ring of bu�ers. [Default: One more than the
size of the send or receive socket bu�er sizes (`-s' and/or `-S' options) divided
by the send `-m' or receive `-M' bu�er size respectively]

-4 Specifying this option will set both the local and remote address families to
AF INET - that is use IPv4 addresses only. This can be overridden by a sub-
sequent `-6', `-H' or `-L' option. Basically, the last option explicitly specifying
an address family wins.

-6 Specifying this option will set both local and and remote address families to
AF INET6 - that is use IPv6 addresses only. This can be overridden by a
subsequent `-4', `-H' or `-L' option. Basically, the last address family explicitly
speci�ed wins.

Chapter 5: Using Netperf to Measure Bulk Data Transfer 15

5 Using Netperf to Measure Bulk Data Transfer

The most commonly measured aspect of networked system performance is that of bulk or
unidirectional transfer performance. Everyone wants to know how many bits or bytes per
second they can push across the network. The netperf convention for a bulk data transfer
test name is to tack a \ STREAM" su�x to a test name.

5.1 Issues in Bulk Transfer
There are any number of things which can a�ect the performance of a bulk transfer test.

Certainly, absent compression, bulk-transfer tests can be limited by the speed of the
slowest link in the path from the source to the destination. If testing over a gigabit link,
you will not see more than a gigabit :) Such situations can be described as being network-
limited or NIC-limited.

CPU utilization can also a�ect the results of a bulk-transfer test. If the networking stack
requires a certain number of instructions or CPU cycles per KB of data transferred, and
the CPU is limited in the number of instructions or cycles it can provide, then the transfer
can be described as being CPU-bound.

A bulk-transfer test can be CPU bound even when netperf reports less than 100% CPU
utilization. This can happen on an MP system where one or more of the CPUs saturate
at 100% but other CPU's remain idle. Typically, a single
ow of data, such as that from a
single instance of a netperf STREAM test cannot make use of much more than the power
of one CPU.

Distance and the speed-of-light can a�ect performance for a bulk-transfer, but often this
can be mitigated by using larger windows. One common limit to the performance of a

ow-controlled transport is:

Throughput <= WindowSize/RoundTripTime
As the sender can only have a window's-worth of data outstanding on the network at

any one time, and the soonest the sender can receive a window update from the receiver is
one RoundTripTime (RTT).

Packet losses and their e�ects can be particularly bad for performance. This is especially
true if the packet losses result in retransmission timeouts for the protocol(s) involved. By
the time a retransmission timeout has happened, the
ow or connection has sat idle for a
considerable length of time.

On many platforms, some variant on the netstat command can be used to retrieve
statistics about packet loss and retransmission. For example:

netstat -p tcp
will retrieve TCP statistics on the HP-UX Operating System. On other platforms, it

may not be possible to retrieve statistics for a speci�c protocol and something like:
netstat -s

would be used instead.
Many times, such network statistics are keep since the time the stack started, and we

are only really interested in statistics from when netperf was running. In such situations
something along the lines of:

Chapter 5: Using Netperf to Measure Bulk Data Transfer 16

netstat -p tcp > before
netperf -t TCP_mumble...
netstat -p tcp > after

is indicated. The beforeafter utility can be used to subtract the statistics in `before'
from the statistics in `after'

beforeafter before after > delta
and then one can look at the statistics in `delta'. While it was written with HP-UX's

netstat in mind, the annotated netstat writeup may be helpful with other platforms as well.

5.2 Options common to TCP UDP and SCTP tests
Many \test-speci�c" options are actually common across the di�erent tests. For those tests
involving TCP, UDP and SCTP, whether using the BSD Sockets or the XTI interface those
common options include:
-h Display the test-suite-speci�c usage string and exit. For a TCP or UDP test

this will be the usage string from the source �le nettest bsd.c. For an XTI test,
this will be the usage string from the source �le nettest xti.c. For an SCTP
test, this will be the usage string from the source �le nettest sctp.c.

-H <optionspec>
Normally, the remote hostname|IP and address family information is inherited
from the settings for the control connection (eg global command-line `-H', `-4'
and/or `-6' options. The test-speci�c `-H' will override those settings for the
data (aka test) connection only. Settings for the control connection are left
unchanged.

-L <optionspec>
The test-speci�c `-L' option is identical to the test-speci�c `-H' option except
it a�ects the local hostname|IP and address family information. As with its
global command-line counterpart, this is generally only useful when measuring
though those evil, end-to-end breaking things called �rewalls.

-m bytes Set the size of the bu�er passed-in to the \send" calls of a STREAM test. Note
that this may have only an indirect e�ect on the size of the packets set onto the
network, and certain Layer 4 protocols do not enforce message boundaries, so
setting `-m' for the send size does not necessarily mean the receiver will receive
that many bytes at any one time. By default the units are bytes, but su�x of
\G," \M," or \K" will specify the units to be 2^30 (GB), 2^20 (MB) or 2^10
(KB) respectively. A su�x of \g," \m" or \k" will specify units of 10^9, 10^6
or 10^3 bytes respectively. For example:

-m 32K
will set the size to 32KB or 32768 bytes. [Default: the local send socket bu�er
size for the connection - either the system's default or the value set via the `-s'
option.]

-M bytes Set the size of the bu�er passed-in to the \recv" calls of a STREAM test. This
will be an upper bound on the number of bytes received per receive call. By
default the units are bytes, but su�x of \G," \M," or \K" will specify the units

ftp://ftp.cup.hp.com/dist/networking/tools/
ftp://ftp.cup.hp.com/dist/networking/briefs/annotated_netstat.txt

Chapter 5: Using Netperf to Measure Bulk Data Transfer 17

to be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively. A su�x of \g," \m"
or \k" will specify units of 10^9, 10^6 or 10^3 bytes respectively. For example:

-M 32K
will set the size to 32KB or 32768 bytes. [Default: the remote receive socket
bu�er size for the data connection - either the system's default or the value set
via the `-S' option.]

-P <optionspec>
Set the local and/or remote port numbers for the data connection.

-s <sizespec>
This option sets the local send and receive socket bu�er sizes for the control
connection to the value(s) speci�ed. Often, this will a�ect the advertised and/or
e�ective TCP or other window, but on some platforms it may not. By default
the units are bytes, but su�x of \G," \M," or \K" will specify the units to be
2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively. A su�x of \g," \m" or \k"
will specify units of 10^9, 10^6 or 10^3 bytes respectively. For example:

-s 128K
Will request the local send and receive socket bu�er sizes to be 128KB or 131072
bytes.
While the historic expectation is that setting the socket bu�er size has a direct
e�ect on say the TCP window, today that may not hold true for all stacks.
[Default: 0 - use the system's default socket bu�er sizes]

-S <sizespec>
This option sets the remote send and/or receive socket bu�er sizes for the control
connection to the value(s) speci�ed. Often, this will a�ect the advertised and/or
e�ective TCP or other window, but on some platforms it may not. By default
the units are bytes, but su�x of \G," \M," or \K" will specify the units to be
2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively. A su�x of \g," \m" or \k"
will specify units of 10^9, 10^6 or 10^3 bytes respectively. For example:

-s 128K
Will request the local send and receive socket bu�er sizes to be 128KB or 131072
bytes.
While the historic expectation is that setting the socket bu�er size has a direct
e�ect on say the TCP window, today that may not hold true for all stacks.
[Default: 0 - use the system's default socket bu�er sizes]

-4 Set the local and remote address family for the data connection to AF INET - ie
use IPv4 addressing only. Just as with their global command-line counterparts
the last of the `-4', `-6', `-H' or `-L' option wins for their respective address
families.

-6 This option is identical to its `-4' cousin, but requests IPv6 addresses for the
local and remote ends of the data connection.

5.2.1 TCP STREAM

The TCP STREAM test is the default test in netperf. It is quite simple, transferring some
quantity of data from the system running netperf to the system running netserver. While

Chapter 5: Using Netperf to Measure Bulk Data Transfer 18

time spent establishing the connection is not included in the throughput calculation, time
spent
ushing the last of the data to the remote at the end of the test is. This is how netperf
knows that all the data it sent was received by the remote. In addition to the Section 5.2
[Options common to TCP UDP and SCTP tests], page 16, the following test-speci�c options
can be included to possibly alter the behavior of the test:
-C This option will set TCP CORK mode on the data connection on those sys-

tems where TCP CORK is de�ned (typically Linux). A full description of
TCP CORK is beyond the scope of this manual, but in a nutshell it forces
sub-MSS sends to be bu�ered so every segment sent is Maximum Segment Size
(MSS) unless the application performs an explicit
ush operation or the connec-
tion is closed. At present netperf does not perform an explicit
ush operations.
Setting TCP CORK may improve the bitrate of tests where the \send size"
(`-m' option) is smaller than the MSS. It should also improve (make smaller)
the service demand.
The Linux tcp(7) manpage states that TCP CORK cannot be used in conjunc-
tion with TCP NODELAY (set via the `-d' option), however netperf does not
validate command-line options to enforce that.

-D This option will set TCP NODELAY on the data connection on those systems
where TCP NODELAY is de�ned. This disables something known as the Nagle
Algorithm, which is intended to make the segments TCP sends as large as
reasonably possible. Setting TCP NODELAY for a TCP STREAM test should
either have no e�ect when the send size (`-m' option) is larger than the MSS
or will decrease reported bitrate and increase service demand when the send
size is smaller than the MSS. This stems from TCP NODELAY causing each
sub-MSS send to be its own TCP segment rather than being aggregated with
other small sends. This means more trips up and down the protocol stack per
KB of data transferred, which means greater CPU utilization.
If setting TCP NODELAY with `-D' a�ects throughput and/or service demand
for tests where the send size (`-m') is larger than the MSS it suggests the TCP/IP
stack's implementation of the Nagle Algorithm may be broken, perhaps in-
terpreting the Nagle Algorithm on a segment by segment basis rather than the
proper user send by user send basis. However, a better test of this can be
achieved with the Section 6.2.1 [TCP RR], page 24 test.

5.2.2 TCP MAERTS

A TCP MAERTS (MAERTS is STREAM backwards) test is \just like" a Section 5.2.1
[TCP STREAM], page 17 test except the data
ows from the netserver to the netperf. The
global command-line `-F' option is ignored for this test type. The test-speci�c command-line
`-C' option is ignored for this test type.

This test is included more for benchmarking convenience than anything else.

5.2.3 TCP SENDFILE

The TCP SENDFILE test is \just like" a Section 5.2.1 [TCP STREAM], page 17 test
except netperf calls the platform's equivalent to HP-UX's sendfile() instead of calling
send(). Often this results in a zero-copy operation where data is sent directly from the

Chapter 5: Using Netperf to Measure Bulk Data Transfer 19

�lesystem bu�er cache. This should result in lower CPU utilization and possibly higher
throughput. If it does not, then you may want to contact your vendor(s) because they have
a problem on their hands.

Zero-copy mechanisms may also alter the characteristics (size and number of bu�ers
per) of packets passed to the NIC. In many stacks, when a copy is performed, the stack
can \reserve" space at the beginning of the destination bu�er for things like TCP, IP and
Link headers. This then has the packet contained in a single bu�er which can be easier to
DMA to the NIC. When no copy is performed, there is no opportunity to reserve space for
headers and so a packet will be contained in two or more bu�ers.

The global `-F' option is required for this test. All other TCP-speci�c options are
available and optional.

5.2.4 UDP STREAM

A UDP STREAM test is similar to a Section 5.2.1 [TCP STREAM], page 17 test except
UDP is used as the transport rather than TCP.

This has a number of implications.
The biggest of these implications is the data which is sent might not be received by the

remote. For this reason, the output of a UDP STREAM test shows both the sending and
receiving throughput. On some platforms, it may be possible for the sending throughput
to be reported as a value greater than the maximum rate of the link. This is common when
the CPU(s) are faster than the network and there is no intra-stack
ow-control.

If the value of the `-m' option is larger than the local send socket bu�er size (`-s' option)
netperf will likely abort with an error message about how the send call failed. If the
value of the `-m' option is larger than the remote socket receive bu�er, the reported receive
throughput will likely be zero as the remote UDP will discard the messages as being too
large to �t into the socket bu�er.

A UDP STREAM test has no end-to-end
ow control - UDP provides none
and neither does netperf. However, if you wish, you can con�gure netperf with
--enable-intervals=yes to enable the global command-line `-b' and `-w' options to pace
bursts of tra�c onto the network.

5.2.5 XTI TCP STREAM

An XTI TCP STREAM test is simply a Section 5.2.1 [TCP STREAM], page 17 test using
the XTI rather than BSD Sockets interface. The test-speci�c `-X <devspec>' option can be
used to specify the name of the local and/or remote XTI device �les, which is required by
the t_open() call made by netperf XTI tests.

The XTI TCP STREAM test is only present if netperf was con�gured with --enable-
xti=yes. The remote netserver must have also been con�gured with --enable-xti=yes.

5.2.6 XTI UDP STREAM

An XTI UDP STREAM test is simply a Section 5.2.4 [UDP STREAM], page 19 test using
the XTI rather than BSD Sockets Interface. The test-speci�c `-X <devspec>' option can
be used to specify the name of the local and/or remote XTI device �les, which is required
by the t_open() call made by netperf XTI tests.

Chapter 5: Using Netperf to Measure Bulk Data Transfer 20

The XTI UDP STREAM test is only present if netperf was con�gured with --enable-
xti=yes. The remote netserver must have also been con�gured with --enable-xti=yes.

5.2.7 SCTP STREAM

An SCTP STREAM test is essentially a Section 5.2.1 [TCP STREAM], page 17 test using
the SCTP rather than TCP. The `-D' option will set SCTP NODELAY, which is much like
the TCP NODELAY option for TCP. The `-C' option is not applicable to an SCTP test as
there is no corresponding SCTP CORK option. The author is still �guring-out what the
`-N' option does :)

The SCTP STREAM test is only present if netperf was con�gured with --enable-
sctp=yes. The remote netserver must have also been con�gured with --enable-sctp=yes.

5.2.8 DLCO STREAM

A DLPI Connection Oriented Stream (DLCO STREAM) test is very similar in concept
to a Section 5.2.1 [TCP STREAM], page 17 test. Both use reliable, connection-oriented
protocols. The DLPI test di�ers from the TCP test in that its protocol operates only at the
link-level and does not include TCP-style segmentation and reassembly. This last di�erence
means that the value passed-in with the `-m' option must be less than the interface MTU.
Otherwise, the `-m' and `-M' options are just like their TCP/UDP/SCTP counterparts.

Other DLPI-speci�c options include:
-D <devspec>

This option is used to provide the fully-quali�ed names for the local and/or
remote DPLI device �les. The syntax is otherwise identical to that of a sizespec.

-p <ppaspec>
This option is used to specify the local and/or remote DLPI PPA(s). The PPA
is used to identify the interface over which tra�c is to be sent/received. The
syntax of a ppaspec is otherwise the same as a sizespec.

-s sap This option speci�es the 802.2 SAP for the test. A SAP is somewhat like either
the port �eld of a TCP or UDP header or the protocol �eld of an IP header. The
speci�ed SAP should not con
ict with any other active SAPs on the speci�ed
PPA's (`-p' option).

-w <sizespec>
This option speci�es the local send and receive window sizes in units of frames
on those platforms which support setting such things.

-W <sizespec>
This option speci�es the remote send and receive window sizes in units of frames
on those platforms which support setting such things.

The DLCO STREAM test is only present if netperf was con�gured with --enable-
dlpi=yes. The remote netserver must have also been con�gured with --enable-dlpi=yes.

5.2.9 DLCL STREAM

A DLPI ConnectionLess Stream (DLCL STREAM) test is analogous to a Section 5.2.4
[UDP STREAM], page 19 test in that both make use of unreliable/best-e�ort, connection-
less transports. The DLCL STREAM test di�ers from the Section 5.2.4 [UDP STREAM],

Chapter 5: Using Netperf to Measure Bulk Data Transfer 21

page 19 test in that the message size (`-m' option) must always be less than the link MTU
as there is no IP-like fragmentation and reassembly available and netperf does not presume
to provide one.

The test-speci�c command-line options for a DLCL STREAM test are the same as those
for a Section 5.2.8 [DLCO STREAM], page 20 test.

The DLCL STREAM test is only present if netperf was con�gured with --enable-
dlpi=yes. The remote netserver must have also been con�gured with --enable-dlpi=yes.

5.2.10 STREAM STREAM

A Unix Domain Stream Socket Stream test (STREAM STREAM) is similar in concept
to a Section 5.2.1 [TCP STREAM], page 17 test, but using Unix Domain sockets. It is,
naturally, limited to intra-machine tra�c. A STREAM STREAM test shares the `-m', `-M',
`-s' and `-S' options of the other STREAM tests. In a STREAM STREAM test the
`-p' option sets the directory in which the pipes will be created rather than setting a port
number. The default is to create the pipes in the system default for the tempnam() call.

The STREAM STREAM test is only present if netperf was con�gured with --enable-
unix=yes. The remote netserver must have also been con�gured with --enable-unix=yes.

5.2.11 DG STREAM

A Unix Domain Datagram Socket Stream test (SG STREAM) is very much like a Sec-
tion 5.2.1 [TCP STREAM], page 17 test except that message boundaries are preserved. In
this way, it may also be considered similar to certain
avors of SCTP test which can also
preserve message boundaries.

All the options of a Section 5.2.10 [STREAM STREAM], page 21 test are applicable to
a DG STREAM test.

The DG STREAM test is only present if netperf was con�gured with --enable-
unix=yes. The remote netserver must have also been con�gured with --enable-unix=yes.

Chapter 6: Using Netperf to Measure Request/Response 22

6 Using Netperf to Measure Request/Response

Request/response performance is often overlooked, yet it is just as important as bulk-
transfer performance. While things like larger socket bu�ers and TCP windows can cover
a multitude of latency and even path-length sins, they cannot easily hide from a re-
quest/response test. The convention for a request/response test is to have a RR su�x.
There are however a few \request/response" tests that have other su�xes.

A request/response test, particularly synchronous, one transaction at at time test such
as those found in netperf, is particularly sensitive to the path-length of the networking
stack. An RR test can also uncover those platforms where the NIC's are strapped by
default with overbearing interrupt avoidance settings in an attempt to increase the bulk-
transfer performance (or rather, decrease the CPU utilization of a bulk-transfer test). This
sensitivity is most acute for small request and response sizes, such as the single-byte default
for a netperf RR test.

While a bulk-transfer test reports its results in units of bits or bytes transfered per
second, a mumble RR test reports transactions per second where a transaction is de�ned
as the completed exchange of a request and a response. One can invert the transaction rate
to arrive at the average round-trip latency. If one is con�dent about the symmetry of the
connection, the average one-way latency can be taken as one-half the average round-trip
latency. Netperf does not do either of these on its own but leaves them as exercises to the
benchmarker.

6.1 Issues in Reqeust/Response
Most if not all the Section 5.1 [Issues in Bulk Transfer], page 15 apply to request/response.
The issue of round-trip latency is even more important as netperf only has one transaction
outstanding at a time.

A single instance of an RR test should never completely saturate the CPU of a system.
If testing between otherwise evenly matched systems, the symmetric nature of a RR test
with equal request and response sizes should result in equal CPU loading on both systems.

For smaller request and response sizes packet loss is a bigger issue as there is no oppor-
tunity for a fast retransmit or retransmission prior to a retrnamission timer expiring.

Certain NICs have ways to minimize the number of interrupts sent to the host. If these
are strapped badly they can signi�cantly reduce the performance of something like a single-
byte request/response test. Such setups are distinguised by seriously low reported CPU
utilization and what seems like a low (even if in the thousands) transaction per second
rate. Also, if you run such an OS/driver combination on faster or slower hardware and do
not see a corresponding change in the transaction rate, chances are good that the drvier is
strapping the NIC with aggressive interrupt avoidance settings. Good for bulk throughput,
but bad for latency.

Some drivers may try to automagically adjust the interrupt avoidance settings. If they
are not terribly good at it, you will see considerable run-to-run variation in reported trans-
action rates. Particularly if you \mix-up" STREAM and RR tests.

Chapter 6: Using Netperf to Measure Request/Response 23

6.2 Options Common to TCP UDP and SCTP RR tests
Many \test-speci�c" options are actually common across the di�erent tests. For those tests
involving TCP, UDP and SCTP, whether using the BSD Sockets or the XTI interface those
common options include:
-h Display the test-suite-speci�c usage string and exit. For a TCP or UDP test

this will be the usage string from the source �le `nettest_bsd.c'. For an XTI
test, this will be the usage string from the source �le `src/nettest_xti.c'.
For an SCTP test, this will be the usage string from the source �le
`src/nettest_sctp.c'.

-H <optionspec>
Normally, the remote hostname|IP and address family information is inherited
from the settings for the control connection (eg global command-line `-H', `-4'
and/or `-6' options. The test-speci�c `-H' will override those settings for the
data (aka test) connection only. Settings for the control connection are left
unchanged. This might be used to cause the control and data connections to
take di�erent paths through the network.

-L <optionspec>
The test-speci�c `-L' option is identical to the test-speci�c `-H' option except
it a�ects the local hostname|IP and address family information. As with its
global command-line counterpart, this is generally only useful when measuring
though those evil, end-to-end breaking things called �rewalls.

-P <optionspec>
Set the local and/or remote port numbers for the data connection.

-r <sizespec>
This option sets the request (�rst value) and/or response (second value) sizes
for an RR test. By default the units are bytes, but a su�x of \G," \M," or \K"
will specify the units to be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively.
A su�x of \g," \m" or \k" will specify units of 10^9, 10^6 or 10^3 bytes
respectively. For example:

-r 128,16K
Will set the request size to 128 bytes and the response size to 16 KB or 16384
bytes. [Default: 1 - a single-byte request and response]

-s <sizespec>
This option sets the local send and receive socket bu�er sizes for the control
connection to the value(s) speci�ed. Often, this will a�ect the advertised and/or
e�ective TCP or other window, but on some platforms it may not. By default
the units are bytes, but a su�x of \G," \M," or \K" will specify the units to
be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively. A su�x of \g," \m" or
\k" will specify units of 10^9, 10^6 or 10^3 bytes respectively. For example:

-s 128K
Will request the local send and receive socket bu�er sizes to be 128KB or 131072
bytes.

Chapter 6: Using Netperf to Measure Request/Response 24

While the historic expectation is that setting the socket bu�er size has a direct
e�ect on say the TCP window, today that may not hold true for all stacks.
[Default: 0 - use the system's default socket bu�er sizes]

-S <sizespec>
This option sets the remote send and/or receive socket bu�er sizes for the control
connection to the value(s) speci�ed. Often, this will a�ect the advertised and/or
e�ective TCP or other window, but on some platforms it may not. By default
the units are bytes, but a su�x of \G," \M," or \K" will specify the units to
be 2^30 (GB), 2^20 (MB) or 2^10 (KB) respectively. A su�x of \g," \m" or
\k" will specify units of 10^9, 10^6 or 10^3 bytes respectively. For example:

-s 128K
Will request the local send and receive socket bu�er sizes to be 128KB or 131072
bytes.
While the historic expectation is that setting the socket bu�er size has a direct
e�ect on say the TCP window, today that may not hold true for all stacks.
[Default: 0 - use the system's default socket bu�er sizes]

-4 Set the local and remote address family for the data connection to AF INET - ie
use IPv4 addressing only. Just as with their global command-line counterparts
the last of the `-4', `-6', `-H' or `-L' option wins for their respective address
families.

-6 This option is identical to its `-4' cousin, but requests IPv6 addresses for the
local and remote ends of the data connection.

6.2.1 TCP RR

A TCP RR (TCP Request/Response) test is requested by passing a value of \TCP RR"
to the global `-t' command-line option. A TCP RR test can be though-of as a user-space
to user-space ping with no think time - it is a synchronous, one transaction at a time,
request/response test.

The transaction rate is the number of complete transactions exchanged divided by the
length of time it took to perform those transactions.

If the two Systems Under Test are otherwise identical, a TCP RR test with the same
request and response size should be symmetric - it should not matter which way the test
is run, and the CPU utilization measured should be virtually the same on each system. If
not, it suggests that the CPU utilization mechanism being used may have some, well, issues
measuring CPU utilization completely and accurately.

Time to establish the TCP connection is not counted in the result. If you want connection
setup overheads included, you should consider the TCP CC or TCP CRR tests.

If specifying the `-D' option to set TCP NODELAY and disable the Nagle Algorithm
increases the transaction rate reported by a TCP RR test, it implies the stack(s) over which
the TCP RR test is running have a broken implementation of the Nagle Algorithm. Likely
as not they are interpreting Nagle on a segment by segment basis rather than a user send
by user send basis. You should contact your stack vendor(s) to report the problem to them.

Chapter 6: Using Netperf to Measure Request/Response 25

6.2.2 TCP CC

A TCP CC (TCP Connect/Close) test is requested by passing a value of \TCP CC" to the
global `-t' option. A TCP CC test simply measures how fast the pair of systems can open
and close connections between one another in a synchronous (one at a time) manner. While
this is considered an RR test, no request or response is exchanged over the connection.

The issue of TIME WAIT reuse is an important one for a TCP CC test. Basically,
TIME WAIT reuse is when a pair of systems churn through connections fast enough that
they wrap the 16-bit port number space in less time than the length of the TIME WAIT
state. While it is indeed theoretically possible to \reuse" a connection in TIME WAIT,
the conditions under which such reuse is possible is rather rare. An attempt to reuse a
connection in TIME WAIT can result in a non-trivial delay in connection establishment.

Basically, any time the connection churn rate approaches:
Sizeof(clientportspace) / Lengthof(TIME WAIT)
there is the risk of TIME WAIT reuse. To minimize the chances of this happening,

netperf will by default select its own client port numbers from the range of 5000 to 65535.
On systems with a 60 second TIME WAIT state, this should allow roughly 1000 transactions
per second. The size of the client port space used by netperf can be controlled via the test-
speci�c `-p' option, which takes a sizespec as a value setting the minimum (�rst value) and
maximum (second value) port numbers used by netperf at the client end.

Since no requests or responses are exchanged during a TCP CC test, only the `-H', `-L',
`-4' and `-6' of the \common" test-speci�c options are likely to have an e�ect, if any, on the
results. The `-s' and `-S' options may have some e�ect if they alter the number and/or
type of options carried in the TCP SYNchronize segments. The `-P' and `-r' options are
utterly ignored.

Since connection establishment and tear-down for TCP is not symmetric, a TCP CC
test is not symmetric in its loading of the two systems under test.

6.2.3 TCP CRR

The TCP Connect/Request/Response (TCP CRR) test is requested by passing a value of
\TCP CRR" to the global `-t' command-line option. A TCP RR test is like a merger of a
TCP RR and TCP CC test which measures the performance of establishing a connection,
exchanging a single request/response transaction, and tearing-down that connection. This
is very much like what happens in an HTTP 1.0 or HTTP 1.1 connection when HTTP
Keepalives are not used. In fact, the TCP CRR test was added to netperf to simulate just
that.

Since a request and response are exchanged the `-r', `-s' and `-S' options can have an
e�ect on the performance.

The issue of TIME WAIT reuse exists for the TCP CRR test just as it does for the
TCP CC test. Similarly, since connection establishment and tear-down is not symmetric,
a TCP CRR test is not symmetric even when the request and response sizes are the same.

6.2.4 UDP RR

A UDP Request/Response (UDP RR) test is requested by passing a value of \UDP RR"
to a global `-t' option. It is very much the same as a TCP RR test except UDP is used
rather than TCP.

Chapter 6: Using Netperf to Measure Request/Response 26

UDP does not provide for retransmission of lost UDP datagrams, and netperf does not
add anything for that either. This means that if any request or response is lost, the
exchange of requests and responses will stop from that point until the test timer expires.
Netperf will not really \know" this has happened - the only symptom will be a low trans-
action per second rate.

The netperf side of a UDP RR test will call connect() on its data socket and thenceforth
use the send() and recv() socket calls. The netserver side of a UDP RR test will not call
connect() and will use recvfrom() and sendto() calls. This means that even if the request
and response sizes are the same, a UDP RR test is not symmetric in its loading of the
two systems under test.

6.2.5 XTI TCP RR

An XTI TCP RR test is essentially the same as a Section 6.2.1 [TCP RR], page 24 test
only using the XTI rather than BSD Sockets interface. It is requested by passing a value
of \XTI TCP RR" to the `-t' global command-line option.

The test-speci�c options for an XTI TCP RR test are the same as those for a TCP RR
test with the addition of the `-X <devspec>' option to specify the names of the local and/or
remote XTI device �le(s).

6.2.6 XTI TCP CC

6.2.7 XTI TCP CRR

6.2.8 XTI UDP RR

An XTI UDP RR test is essentially the same as a UDP RR test only using the XTI rather
than BSD Sockets interface. It is requested by passing a value of \XTI UDP RR" to the
`-t' global command-line option.

The test-speci�c options for an XTI UDP RR test are the same as those for a UDP RR
test with the addition of the `-X <devspec>' option to specify the name of the local and/or
remote XTI device �le(s).

6.2.9 DLCL RR

6.2.10 DLCO RR

6.2.11 SCTP RR

Chapter 7: Other Netperf Tests 27

7 Other Netperf Tests

Apart from the typical performance tests, netperf contains some tests which can be used to
streamline measurements and reporting. These include CPU rate calibration (present) and
host identi�cation (future enhancement).

7.1 CPU rate calibration
Some of the CPU utilization measurement mechanisms of netperf work by comparing the
rate at which some counter increments when the system is idle with the rate at which that
same counter increments when the system is running a netperf test. The ratio of those rates
is used to arrive at a CPU utilization percentage.

This means that netperf must know the rate at which the counter counts when the
system is presumed to be \idle." If it does not know the rate, it will measure it before
starting a data transfer test. This calibration step takes 40 seconds, and if repeated for
each netperf test would make taking repeated measurements rather slow.

Thus, the netperf CPU utilization options `-c' and and `-C' can take an optional calibra-
tion value. This value is used as the \idle rate" and the calibration step is not performed.
To determine the idle rate, netperf can be used to run special tests which only report the
value of the calibration - they are the LOC CPU and REM CPU tests. These return the
calibration value for the local and remote system respectively. A common way to use these
tests is to store their results into an environment variable and use that in subsequent netperf
commands:

LOC_RATE=`netperf -t LOC_CPU`
REM_RATE=`netperf -H <remote> -t REM_CPU`
netperf -H <remote> -c $LOC_RATE -C $REM_RATE ... -- ...
...
netperf -H <remote> -c $LOC_RATE -C $REM_RATE ... -- ...

If you are going to use netperf to measure aggregate results, it is important to use the
LOC CPU and REM CPU tests to get the calibration values �rst to avoid issues with some
of the aggregate netperf tests transferring data while others are \idle" and getting bogus
calibration values. When running aggregate tests, it is very important to remember that
any one instance of netperf does not know about the other instances of netperf. It will
report global CPU utilization and will calculate service demand believing it was the only
thing causing that CPU utilization. So, you can use the CPU utilization reported by netperf
in an aggregate test, but you have to calculate service demands by hand.

Chapter 8: Address Resolution 28

8 Address Resolution

Netperf versions 2.4.0 and later have merged IPv4 and IPv6 tests so the functionality of the
tests in `src/nettest_ipv6.c' has been subsumed into the tests in `src/nettest_bsd.c'
This has been accomplished in part by switching from gethostbyname()to getaddrinfo()
exclusively. While it was theoretically possible to get multiple results for a hostname from
gethostbyname() it was generally unlikely and netperf's ignoring of the second and later
results was not much of an issue.

Now with getaddrinfo and particularly with AF UNSPEC it is increasingly likely that a
given hostname will have multiple associated addresses. The establish_control() routine
of `src/netlib.c' will indeed attempt to chose from among all the matching IP addresses
when establishing the control connection. Netperf does not really care if the control
connection is IPv4 or IPv6 or even mixed on either end.

However, the individual tests still ass-u-me that the �rst result in the address list is the
one to be used. Whether or not this will turn-out to be an issue has yet to be determined.

If you do run into problems with this, the easiest workaround is to specify IP ad-
dresses for the data connection explicitly in the test-speci�c `-H' and `-L' options. At
some point, the netperf tests may try to be more sophisticated in their parsing of returns
from getaddrinfo() - straw-man patches to netperf-feedback@netperf.org would of
course be most welcome :)

Netperf has leveraged code from other open-source projects with amenable licensing to
provide a replacement getaddrinfo() call on those platforms where the configure script
believes there is no native getaddrinfo call. This has been tested on HP-UX 11.0 but not
elsewhere.

mailto:netperf-feedback@netperf.org

Chapter 9: Enhancing Netperf 29

9 Enhancing Netperf

Netperf is constantly evolving. If you �nd you want to make enhancements to netperf, by
all means do so. If you wish to add a new \suite" of tests to netperf the general idea is to
1. Add �les `src/nettest_mumble.c' and `src/nettest_mumble.h' where mumble is re-

placed with something meaningful for the test-suite.
2. Add support for an apropriate `--enable-mumble' option in `configure.ac'.
3. Edit `src/netperf.c', `netsh.c', and `netserver.c' as required, using #ifdef

WANT MUMBLE.
4. Compile and test
If you wish to submit your changes for possible inclusion into the mainline sources,

please try to base your changes on the latest available sources. (See Section 2.1 [Getting
Netperf Bits], page 3.) and then send email describing the changes at a high level to
netperf-feedback@netperf.org or perhaps netperf-talk@netperf.org. If the concen-
sus is positive, then sending context diff results to netperf-feedback@netperf.org is
the next step. From that point, it is a matter of pestering the Netperf Contributing Editor
until he gets the changes incorporated :)

mailto:netperf-feedback@netperf.org
mailto:netperf-talk@netperf.org
mailto:netperf-feedback@netperf.org

Chapter 9: Index 30

Index

chapter, Installing Netperf . 3

chapter, Introduction . 1

chapter, The Design of Netperf 6

	Introduction
	Conventions

	Installing Netperf
	Getting Netperf Bits
	Installing Netperf
	Verifying Installation

	The Design of Netperf
	CPU Utilization

	Global Command-line Options
	Command-line Options Syntax
	Global Options

	Using Netperf to Measure Bulk Data Transfer
	Issues in Bulk Transfer
	Options common to TCP UDP and SCTP tests
	TCP_STREAM
	TCP_MAERTS
	TCP_SENDFILE
	UDP_STREAM
	XTI_TCP_STREAM
	XTI_UDP_STREAM
	SCTP_STREAM
	DLCO_STREAM
	DLCL_STREAM
	STREAM_STREAM
	DG_STREAM

	Using Netperf to Measure Request/Response
	Issues in Reqeust/Response
	Options Common to TCP UDP and SCTP _RR tests
	TCP_RR
	TCP_CC
	TCP_CRR
	UDP_RR
	XTI_TCP_RR
	XTI_TCP_CC
	XTI_TCP_CRR
	XTI_UDP_RR
	DLCL_RR
	DLCO_RR
	SCTP_RR

	Other Netperf Tests
	CPU rate calibration

	Address Resolution
	Enhancing Netperf
	Index

