Where does WiFi Security Come From?

Jesse Walker Intel Corporation jesse.walker@intel.com

Agenda

The Chain of Trust

How 802.11i Delivers

Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States or other countri

The Chain of Trust

Authentication

Data Integrity Data Confidentiality

Data Confidentiality

- Purpose: Control read access of the channel
 So an attacker cannot steal your data
- How:

♦ Use a cryptographic key to

- encrypt every packet sent over the channel
- decrypt every packet received over the channel

◇Discard all unencrypted packets

Key use proves authorization to access channel

Questions:

Required qualities of the cryptographic key?
How do you know the decrypted data is any
Intel Comgood?ions Group

Decryption works the same way: $p = c \oplus k$

Thought Experiment: what happens if you encrypt two different plaintexts under the same key stream by *k*?

 $c_1 = p_1 \oplus k \qquad c_2 = p_2 \oplus k$ $c_1 \oplus c_2 = p_1 \oplus k \oplus p_2 \oplus k = p_1 \oplus p_2$

Conclusion: can't reuse the key stream byte *k* across different packets; need a *fresh* key every time stream cipher is reinitialized

Forgery attacks

• Defeating stream ciphers:

□ Capture an in-flight encrypted packet

 \Box Pick any byte *c* of ciphertext data and flip one of its bits. Then we know $c = p \oplus k$ for some key stream byte *k*

□ Release captured altered packet

□ On decryption, since $p' = c \oplus k$, the byte with bit flipped will decrypt as $p' = p \oplus 1$

Encryption only provides confidentiality, not integrity!

Data Integrity

- Purpose: Control write access to the channel so attacker cannot
 - ♦ impersonate you to the network
 - Impersonate the network to you
 - ◊ use the network to decrypt your data

How:

- ◇ Give each packet a sequence number
- Use a cryptographic key deriving from authentication to "sign" every packet, including sequence number
- Use a cryptographic key to verify every "signed" packet received over the channel
- ♦ Discard all packets with invalid "signatures"
- ♦ Discard all unsigned packets
- ◊ Discard all packets received out of order (wrong seq #)
- $\diamond\,\text{Key}$ use proves authorization to access channel
- Questions:

Intel ComRequired qualities of the integrity key?

Data Integrity's Achilles Heel

Thought Experiment: what happens if you reuse sequence numbers with the same cryptographic key?

Answer: Attacker can replay packets

Conclusion: Need a *fresh* data integrity key each time the packet sequence space is restarted

Authorization

- Purpose: to make a decision
 - Oecide whether you want to talk with the network
 - ♦ The network will do the same with you
- How:
 - ♦ Look for the network on list of approved networks
 - Network will look for you among list of authorized users/devices
 - ◇ Device and network agree on fresh cryptographic keys
 - Device and network use agreed-upon cryptographic key to enforce access on each subsequent packets
- Questions:

♦ How do you know the peer is really the authorized party?

Authentication

Discover the peer's identity

The network proves who it is to you, so you can decide if you *really* do want to talk with it

- Over the second seco
- How:

Authentication based on credentials exchange

Questions:

Owners of the credentials used in the exchange come from?

What properties are required of the exchange?

Observations

- Can't obtain confidentiality without integrity
 An attacker can use the infrastructure to help break the encryption key
- Can't obtain confidentiality without authorization
 Need to create a fresh data encryption key to to limit read access to the data
- Can't obtain integrity without authorization
 Need to create a fresh data integrity key to prove traffic is authorized
- Can't obtain authorization without authentication
 How do you know if they are allowed if you don't know who they are?

No Security without all the links in the chain

What is...?

- TGi IEEE working group tasked to "fix" WiFi security
- 802.11i Standard that will be produced by TGi
- WPA WiFi Protected Access; prestandard subset of 802.11i
 Includes TKIP, to "replace" WEP
 Includes 802.11i key management
 Includes 802.1X authentication

802.11i Key Hierarchy

Master Key (MK)

Pairwise Master Key (PMK) = TLS-PRF(MasterKey, "client EAP encryption" | clientHello.random | serverHello.random)

Pairwise Transient Key (PTK) = EAPoL-PRF(PMK, AP Nonce | STA Nonce | AP MAC Addr | STA MAC Addr)

Key Confirmation Key (KCK) – PTK bits 0–127 Key Encryption Key (KEK) – PTK bits 128–255

Temporal Key – PTK bits 256–*n* – can have cipher suite specific structure

Intel Communications Group

Int

802.11 Operational Phases

How does 802.11i provide...?

Seq #	Data	MIC
48 bits	>=0 octets	8 octets

802.11i fixes WiFi protocol security

Summary

- No Security without all the links in the chain
- 802.11i fixes WiFi protocol security

Feedback?

