Scaling to Tomorrow

version 2.0

CISCO SYSTEMS

- Six Techniques used by the Internet Community to scale bandwidth:
 - Bigger Circuits
 - Inverse Multiplexing
 - Clear Channel E3 or DS3
 - PPP over SDH
 - Asymmetrical Satellite Systems
 - Hybrid Systems

Easiest way to scale bandwidth is to upgrade the circuit. There are not many OC-12s (633Mbps) circuits across the Atlantic.

> Problem: Many Telcos fail in their engineering and capacity planning for transmission capacity - leading to limits on the upgrade capability (i.e. locked to nxE1 upgrades).

www.cisco.com

"

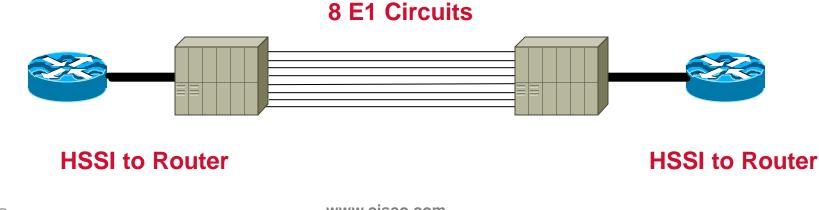
Pearl: It helps to work directly with the people who do the international transmission capacity planning and purchasing. They get to see your projections, you get on time upgrades.

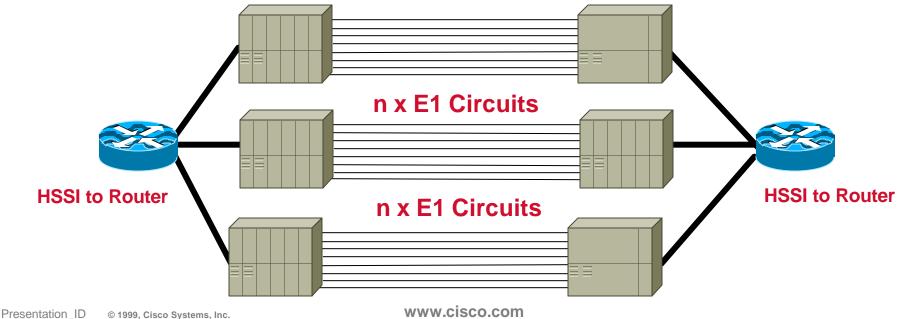
- Inverse Multiplexing (iMux) takes several circuits and *bundles* them into one or more logical circuits.
- Two major techniques:
 - ✓ Use protocol/forwarding features in the router
 - Use an external inverse multiplexer

Router protocol/forwarding features as iMux

✓ Parallel Links Across the Ocean. n x E1 circuits between the routers using the routing protocols to perform the load balancing and bundling of the parallel circuits - works up to 4 to 8 E1s.

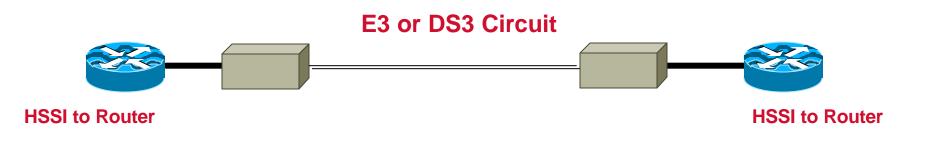
Data In


Data Out


Several Techniques:

- ✓ Static Route Per Packet
- ✓ OSPF
- eBGP Multihop Per Flow (w/ Netflow & CEF) or Per Packet (w/ CEF)
- Multi-Link PPP (MLPPP) Tighter Bundling Options (up to 8)
- CEF Load Balancing Per packet or per flow
- SGP Maximum Paths (up to 6 different routers)

- Many Telcos have not provisioned facilities to cater to oceanic circuits above E1.
- Many E1s grouped together into a larger pipe via iMUX technology.
- ✓ Defacto Industry practice is to use Cisco Routers with HSSI ports connected to Larscom's Orion 4000 iMUXes.



- Several iMUX bundles can be grouped together on the same router to build 34M and 45M equivalent circuits
- eBGP Multihop is the preferred load balancing technique.
- ✓ Telstra Internet is now over 100M of iMUX backbone bandwidth!

Clear Channel E3 (34M) or DS3 (45M)

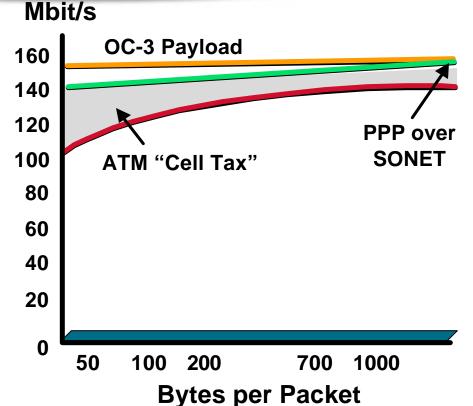
- Preferred method for high speed backbone links is a clear channel circuit.
- Configuration is simple connect the CSU/DSU to a HSSI/T!/E1 port on a Cisco router.

- What do you do after DS3 (45M)?
 - ✓ Multiple DS3?
 - ATM at OC-3 (155M) or OC-12 (622M)?
 - Verify PPP over SDH at OC-3 (155M) or OC-12 (622M)?
- ATM vs PPP over SDH (POSIP)

✓ ATM is <u>not</u> the best choice when all you are doing is Internet traffic across the ocean.

Line utilization

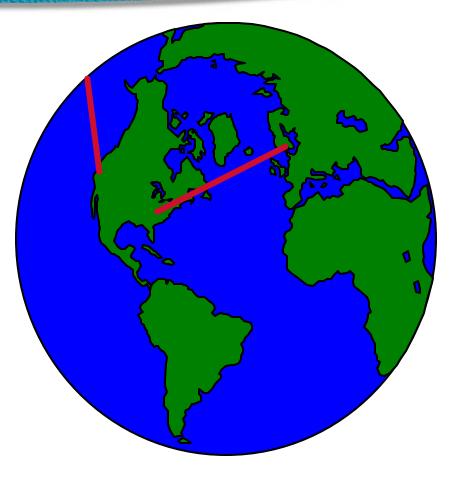
Packet over SONET provides 98% utilization


✓ 20% - 30% overhead over an ocean is a lot of money!

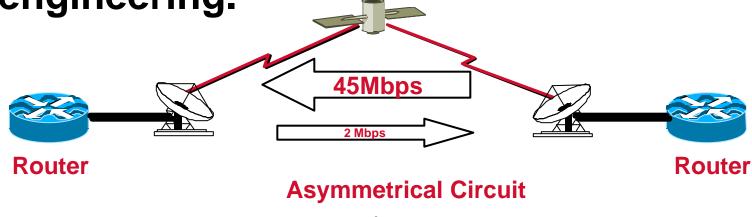
Goodput verses throughput

 Sufficient buffering for large TCP flows

Congestion avoidance

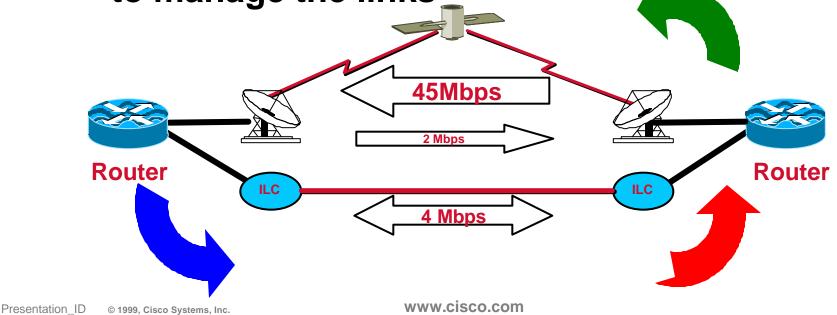

ATM and TCP/IP Headers are part of "throughput," not "goodput"

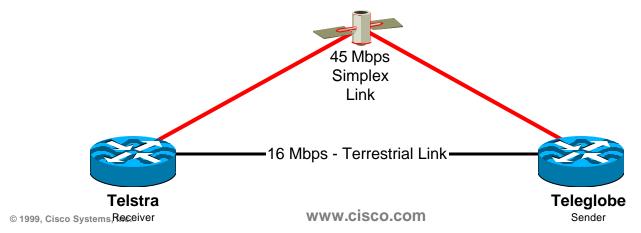
POSIP Overview


- ✓ Packet-oriented serial interface, OC3/STM-1, OC-12, OC-48
- ✓ Supports either SONET or SDH interface
- ✓ PPP packets are encapsulated in SONET STS-3c
- Provides superior line utilization and data efficiency
 - → POS available information bandwidth: 149.76 Mbps
 - → ATM available information bandwidth: 128.36 Mbps
 - → Cell tax ranges from 14-50% depends on the packet distribution
- Encapsulations
 - ⇒ RFC 1619 point-to-point protocol over SONET/SDH
 - → RFC 1662 point-to-point protocol in HDLC-like framing
- ✓ IP protocol only

- Pensacken NY (Sprint NAP) to Stockholm Sweden (D-GIX).
- First 155 M Internet link across an ocean!
- First operational 155M POSIP connection!
- Second is from Japan to US

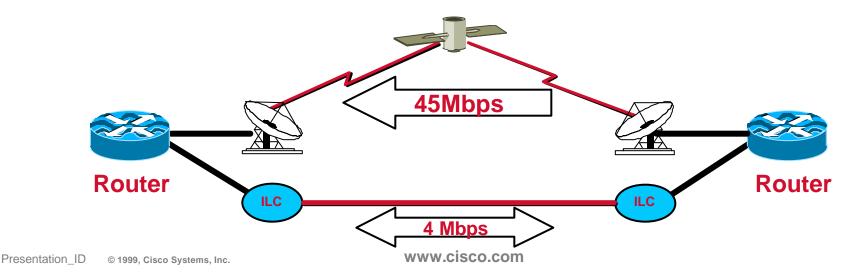
- If an ISP's trans-oceanic traffic pattern is always asymmetrical, then why pay for that idle bandwidth going out?
 - Asymmetrical traffic pattern is when the ISPs is pulling down more information than sending out. Today a typical ISP is somewhere between a 80:20 - 60:40 traffic ratio to the US.
- Satellite Services allow ISPs to buy a circuit with different speeds in the two different directions.
 - For example 2 Mbps in / 256 Kbps out
- Hence the ISPs only pays for what they need no idle bandwidth giving the other side a free ride.


- Trans-Oceanic ISP links are a reality. They work and are used to backup terrestrial trans-oceanic links.
- Latency issues (around 700 ms RTT) can be minimized through creative engineering.

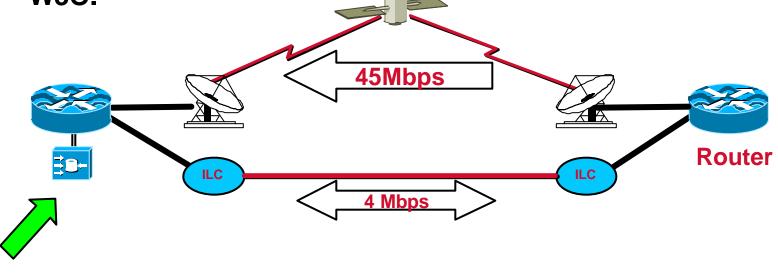

www.cisco.com

- Minimizing Latency on Asymmetrical Satellite Links:
 - Good Traffic Engineering (i.e. avoid congestion)
 - Hybrid Asymmetrical Links
 - Hybrid Simplex Links
 - WWW Caching
 - Content Routing

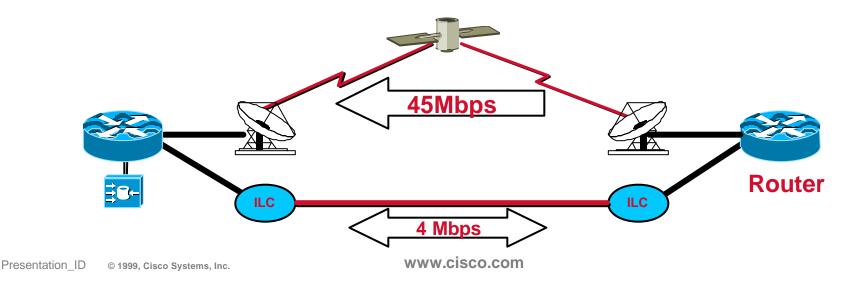
- Hybrid Asymmetrical Satellite links combine terrestrial and satellite together.
 - ✓ Reduces the latency by 1/3 to 1/2.
 - Static, BGP filtering, or eBGP multihop is used to manage the links

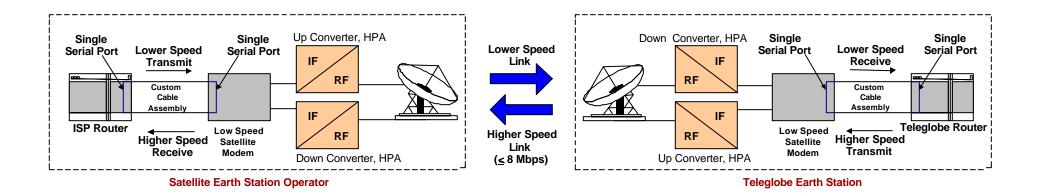


- Telstra and Teleglobe were the first two ISPs who pioneered this technique.
 - Several other ISPs in Asia and Europe are using this technique.
 - Very few Tier 1 & 2 NSPs in the US will terminate these trans-oceanic systems - hence the growth of co-lo business (I.e. AboveNet)

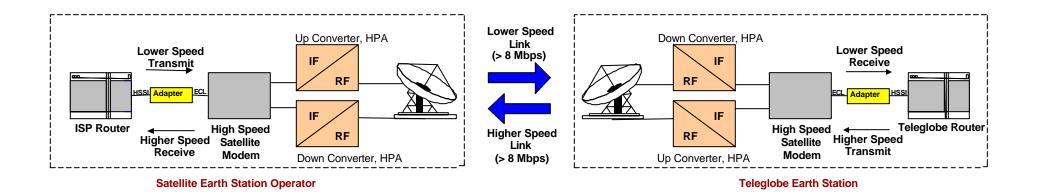


Presentation ID

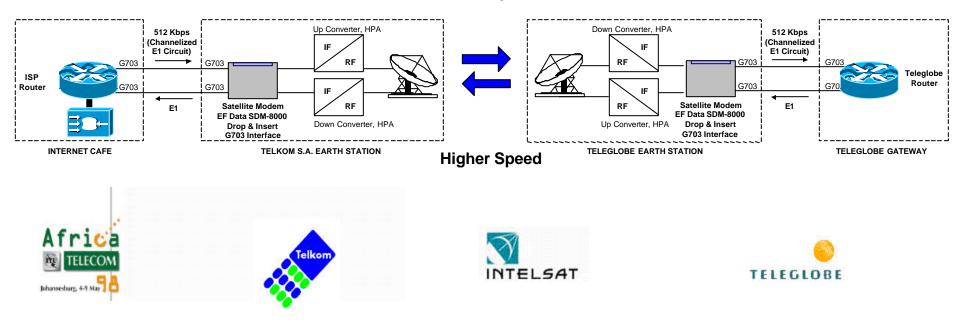

- Hybrid Simplex Satellite links combine terrestrial and satellite's capability to for a circuit with only direction..
 - Takes advantage of uni-directional nature of satellite circuits
 - ✓ Reduces the latency by 1/3 to 1/2.
 - Static, BGP filtering, or eBGP multihop is used to manage the links with new protocols coming.


- WWW Caching adds an additional "buffer" to the higher latency.
 - Caches content as it comes over the link.
 - Minimizes the download of the same content over and over again.
 - WWW Caching is a main stream Internet technology all issues with it's use have been resolved via technical means via IETF and W3O.

- Since asymmetrical systems will limit any "free rides" from people who should be paying for the traffic from the ISP to the world.
 - The system is designed around the ISP's traffic profile.
 - Choke point in the ISP's space limits excessive pull from the other side.



<u>Asymmetric Satellite Service - Scenario 1A</u> ISP Router in Earth Station Receive and Transmit Links (less than or equal to 8 Mbps)


Single low-speed satellite modem supports up-link and down-link speeds up to 8 Mbps

Asymmetric Satellite Service - Scenario 1B ISP Router in Earth Station Receive Link to ISP (greater than 8 Mbps) Transmit Link from ISP (greater than 8 Mbps)

Single high-speed satellite modem supports up-link and down-link speeds up to 45 Mbps

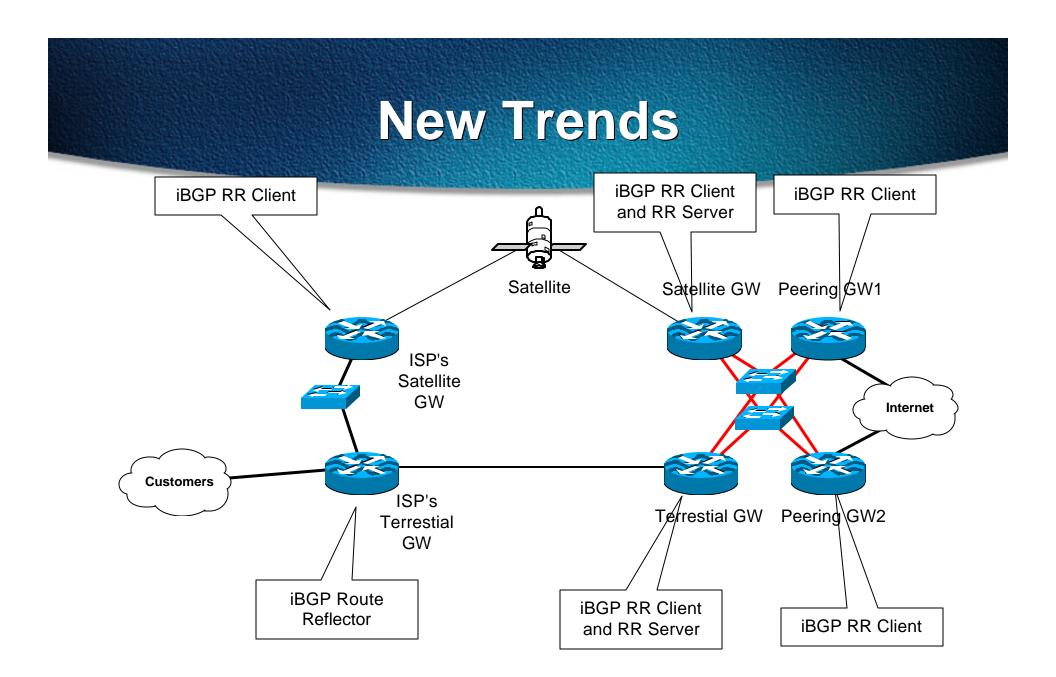
Teleglobe & Intelsat Asymmetric E1/512 Kbps Satellite Link for Africa Telecom `98 Internet Cafe

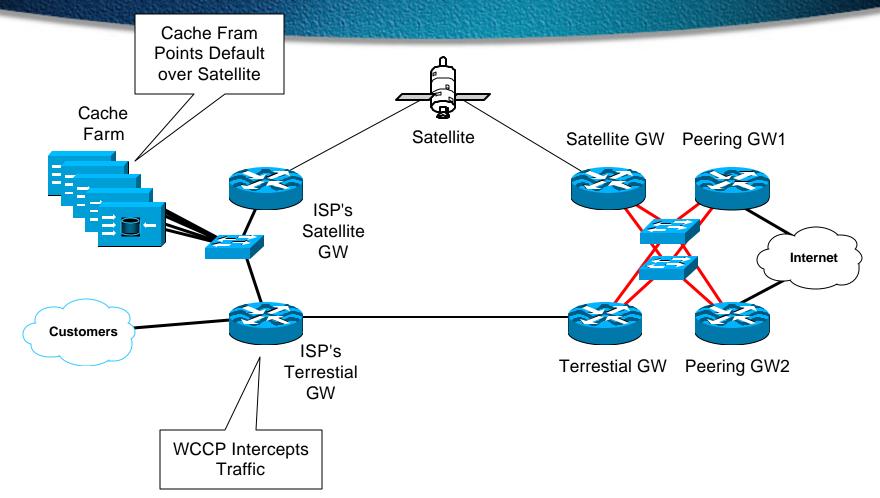
Lower Speed

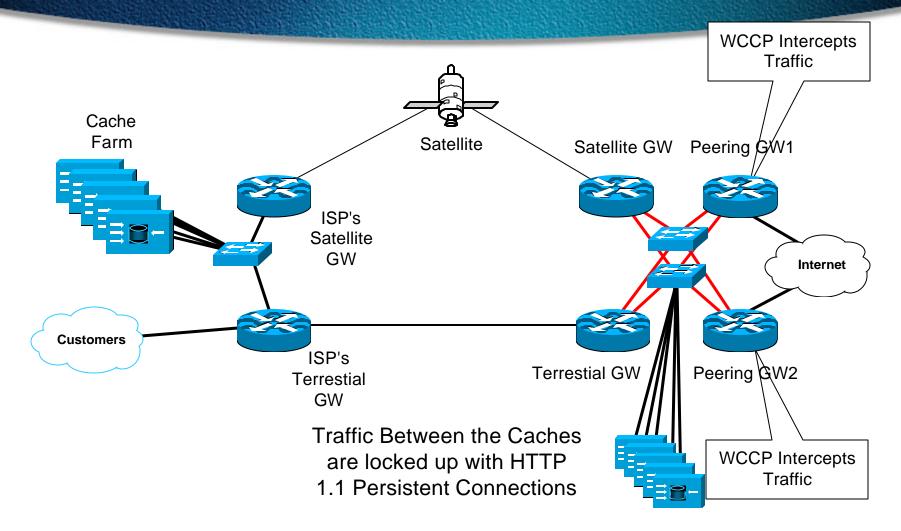
Equipment Issues

- ✓ Need a interface card in a router with lots of buffering. VIP2-50 with max memory connected to a HSSI PA or POS PA (DS-3) are known to work.
- ✓ Need Random Early Detection (RED). Needed to insure effective utilization of the link.

What others are doing with their Trans-Oceanic Links

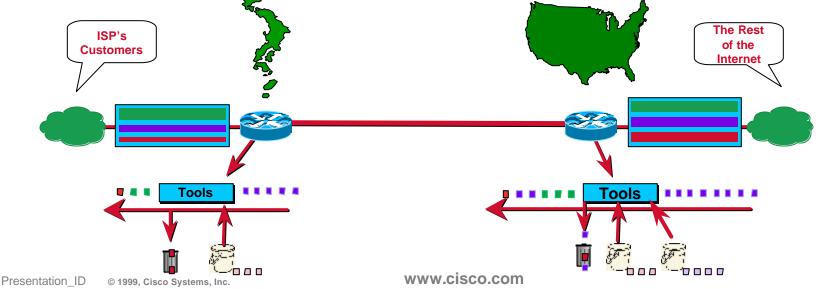

Presentation_ID © 1999, Cisco Systems, Inc.


www.cisco.com

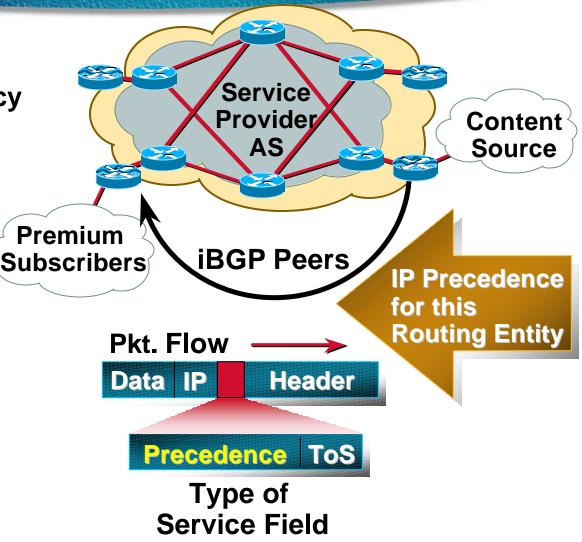

- Co-Location or Lease of Router in the US.
- Dual Sided Content Routing.
- Heavy Localization of traffic (IXPs)

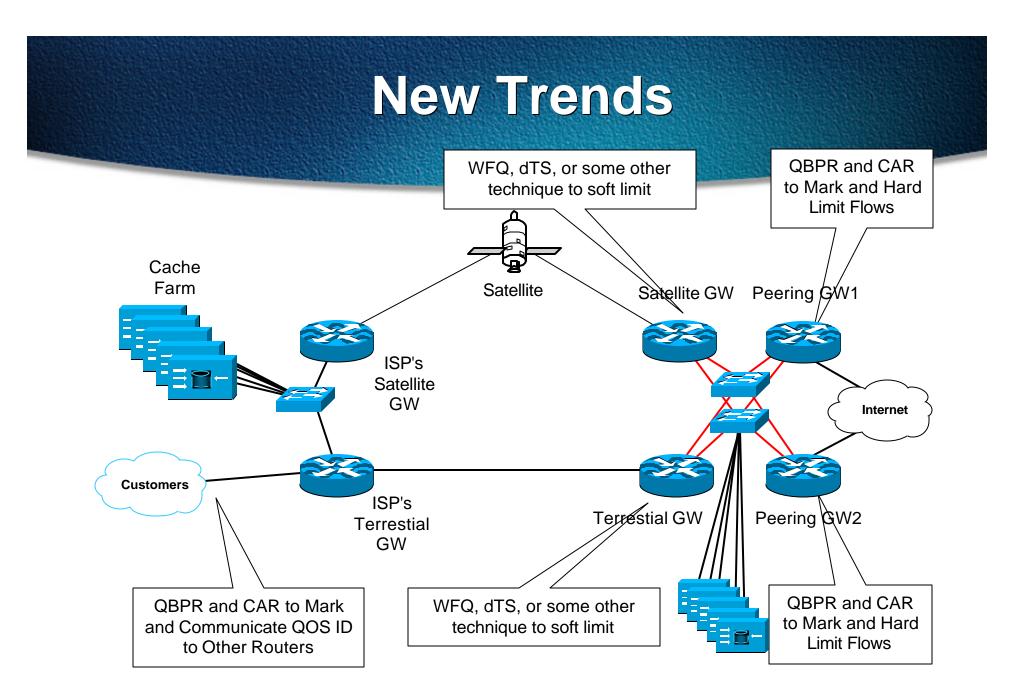
- ISP's Trans-Oceanic Backbones are migrating into systems designed to get maximized efficiency from the link.
- High Cost of trans-oceanic bandwidth, Exponential Growth, and new demand for Value Added Services (QoS, Content Routing, and VoIP) are all driving factors.

- These Trans-Oceanic Systems will consist of:
 - ✓ Mix of Satellite and Terrestrial Circuits
 - WWW Caching and Performance Enchanting Proxies
 - ✓ QoS Services (Premium and Basic)
 - Application Redirection (Voice and Multicast)



- HTTP 1.1 Persistent connections between the two caches move the average packet size from ~40 bytes to 512 - 1500 bytes.
 - More Goodput vs Overhead
 - Satellite Modifications to TCP increase efficiencies (RFC 2488 or equivalent)
- Technique is also called Performance Enhancing Proxies (PEP)


✓ draft-ietf-pilc-pep-00.txt


- Any QoS, CoS, or DiffServ tools need to be applied on the upstream router's interface.
 - Applying the tools on the *downstream* side would force the ISP to pay for the packets before they are dropped.
 - Most US NSPs are reluctant to apply any special configurations on the US side.
 - That means the ISP outside of the US needs to co-locate their own router in the US (or lease one from a NSP in their facilities).

New Trends

- Use BGP to propagate precedence-setting policy as needs change
- BGP community label used to bind precedence polices to destination prefixes
- Return traffic classified with appropriate QoS

New Trends

• What's Next?

- VoIP and IP Telephony. Using routing tricks or NPR (Netflow Policy Based Routing) to keep voice traffic on the terrestrial circuits.
- Content Replication. Pushing content from the international side to the US side of the link.

Collecting and Reporting Capacity Information

Internet Traffic Measurement

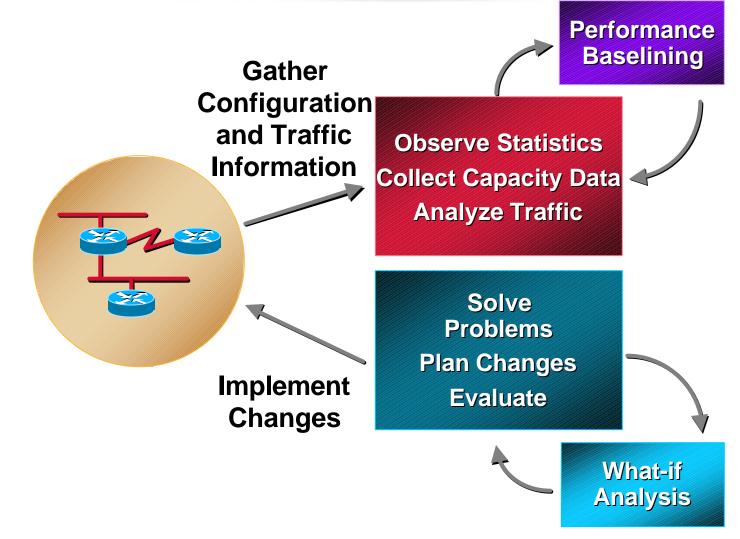
- Aggressive collections and analysis of network data is critical to any ISPs who wishes to tackle the problems of CoS, QoS, and I3F
- Ironically, most ISPs do not collect this information, even when most of the tools are public domain on the Internet.
- The concern is that so many people are talking about buzzword and not enough about the fundamentals of what is actually happening on the Internet.

Performance Management and Capacity Planning Definitions

Capacity planning

- The process of determining the likely future network resource requirements to prevent a performance impact on business critical applications
- Performance management

 The practice of managing network service response time, consistency and quality for individual services and services overall

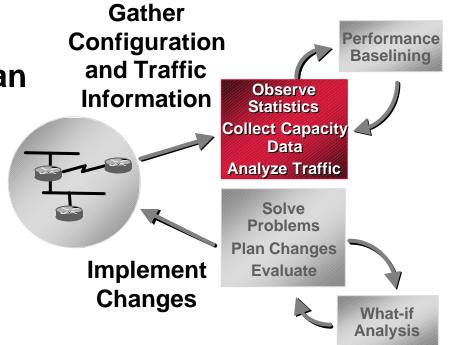

Increasing Importance of Capacity Planning

- Frequent application deployment failure
- Increased reliance on network services for business applications
- Exponential growth in business and nonbusiness related traffic
- Network Failure is typically capacity related

Capacity Related Risks

- Network degradation and failure
- Application timeouts and failure
- Application performance degradation

Effective Capacity Management



Resource Constraints or Bottlenecks

- CPU
- Memory
- Buffering, queuing and latency
- Interface and pipe sizes
- Speed and distance
- Application characteristics

Collecting and Reporting Capacity Information

- Development of information collection plan
- Tools for collecting capacity information
- Defining capacity areas
- Reporting and interpreting results

Information to Collect

- Link utilization
- CPU
- Memory
- Performance (ping response time)
- Queue/buffer drops
- Broadcast volume

- Frame Relay DE, FECN, BECN, traffic-shaping parameters
- NetFlow statistics
- RMON

Link Utilization

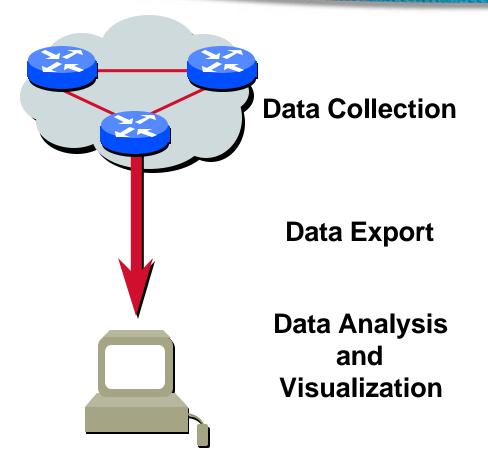
Resource	Address	Segment	Avg. Util (%)	Peak Util (%)
JTKR01S2	10.2.6.1	128 Kbps	66.3	97.6
JYKR01S0	10.2.6.2	128 Kbps	66.3	97.8
FMCR18S4/4	10.2.5.1	384 Kbps	51.3	109.7
PACR01S3/1	10.2.5.2	384 Kbps	51.1	98.4

CPU Utilization

Resource	Polling Address	Avg. Util (%)	Peak Util (%)
FSTR01	10.28.142.1	60.4	80
NERT06	10.170.2.1	47	86
NORR01	10.73.200.1	47	99
RTCR01	10.49.136.1	42	98

Performance (Ping Response Time)

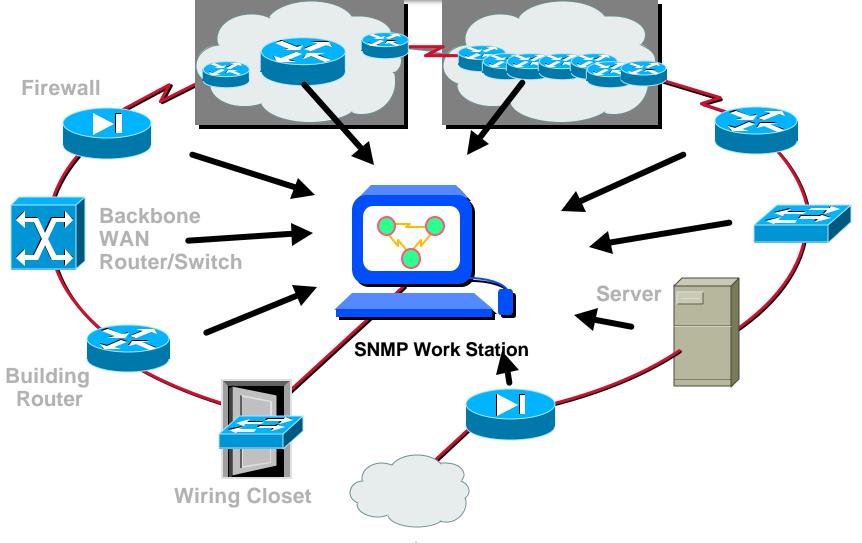
Resource	Address	AvRes T (mS) 09-09-98	AvRes T (mS) 09-09-98	AvRes T (mS) 09-24-98	AvRes T (mS) 10-01-98
AADR01	10.190.56.1	469.1	852.4	461.1	873.2
ABNR01	10.190.52.1	486.1	869.2	489.5	880.2
APRR01	10.190.54.1	490.7	883.4	485.2	892.5
ASAR01	10.196.170.1	619.6	912.3	613.5	902.2
ASRR01	10.196.178.1	667.7	976.4	655.5	948.6
ASYR01S					503.4
AZWRT01	10.177.32.1	460.1		444.7	
BEJR01	10.195.18.1	1023.7	1064.6	1184	1021.9

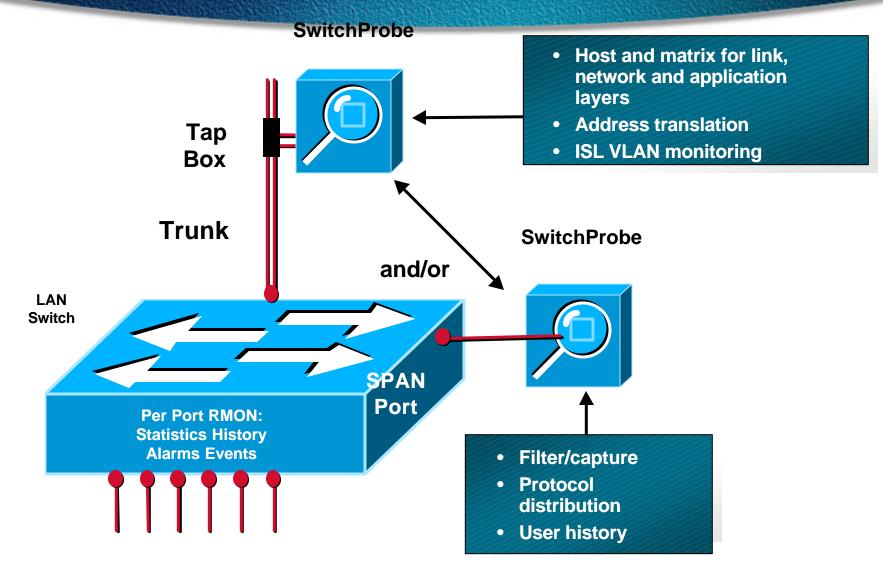

Capacity and Performance Tools

www.cisco.com

Three Essential Tools

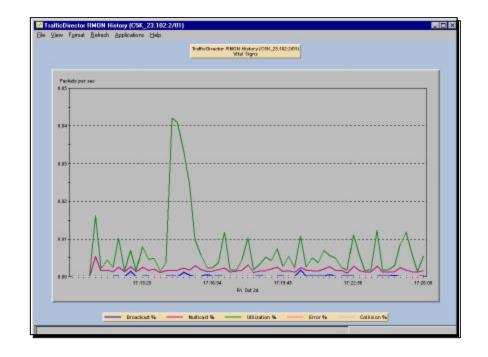
- Simple Network Management
 Protocol (SNMP)
- <u>Remote</u> <u>MON</u>itoring Protocol (RMON)
- <u>NetFlow</u> Flow Based TCP/IP Analysis


Traffic Management Elements

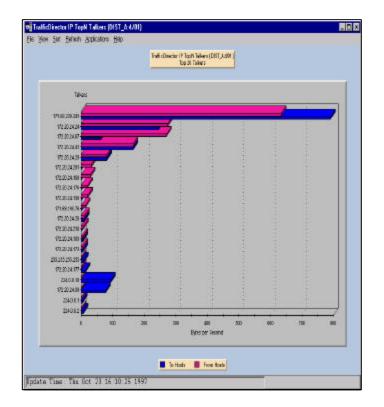

- Data collection mechanisms on network equipment
- Data export mechanisms to applications
- Data analysis and visualization

SNMP is everywhere in the Internet

Service Provider Service Provider


Network Monitoring with RMON

Traffic Analysis on: Link, Network and Application Layers

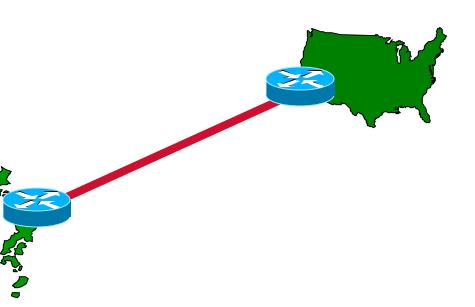

Aggregate and historical statistical analysis for switched segments

- Bandwidth utilization
- Error analysis
- Broadcast levels
- Baseline analysis

Top Hosts

- Top hosts by any of the following metrics:
 - Packets sent or received
 - Octets sent or received
 - Broadcasts sent
 - Multicasts sent
 - ✓ Errors generated

Most ISPs outside the US only measure one side of the link. To get a accurate picture of what is happening on the link that they are paying \$\$\$\$ for, SNMP needs to be open on the upstream site of the link.


SNMP on the upstream side of the link will tell the ISP if:

- Packets are dropped on the US side
- In/out bytes per second
- Other information

Presentation_ID © 1999, Cisco Systems, Inc.

www.cisco.com

- ISPs Outside of the US should require the upstream provider to:
 - Create a special SNMP Community with ACL to poll the router on the US side.

• OR

Create a special Web page that displays the SNMP data. MRTG or Looking Glass with access security would work.

Presentation_ID

www.cisco.com

		A TANKA DA SA TANGA A TANG	IN SOLUTION OF L	A DE LA CALENCE	and the second se				
Serial1/0/2			: gin-p -01-2000		Interface: Seri 00 to 04-30-2000		1984		
Speed 1,984 Available: 29d 23h 0m 0s(100.00%)	Throughput	80774 A					1587 1190 793		
<u>Avaliable</u> , 294 251 oli 08(100.0078)	Ē	07. 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29							
-				US-	EDT (UTC-4)				
definitions	KBits/Sec Avg	Pkts/sec Avg /Max	GBytes	MPkts	Drops	Discards	Errors		
In	1,119(56.402%)	1,257 / 2,033	22,629	3,177	0(0.000%)	0(0.000%)	7,886,613(0.242%)		
Out	1,190(59.957%)	291/473	24,055	734	7,233,624(0.962%)	0(0.000%)	0(0.000%)		
Runts	Giants	CRC	Frame	Overrun	Ignored	Abort	Collisions		
0	1837	7841488	1665	440	0	44685	0		

	Percentate Percentate						
In	92%	88%	16h 0m 0s(2.225%)	2d 14h 0m 0s(8.623%)	4d 12h 0m 0s(15.021%)	6d 15h 0m 0s(22.114%)	
Out	96%	95%	4d 0h 0m 0s(13.352%)	6d 3h 0m 0s(20.445%)	7d 15h 0m 0s(25.452%)	9d 15h 0m 0s(32.128%)	

Interface is UP	Average utilization is over 80%	Packet drop is over 1%	Input	Input packets drop
Interface is DOWN	Average utilization is over 90%	Packet drop is over 2%	Output	Output packets drop

Serial5/1/3 Router: gin-ppt-bb2 Interface: Serial5/1/3 Speed 1,984 Available: 29d 23h 0m 0s(100.00%) Image: Serial 5/1/3							
definitions	KBits/Sec	Pkts/sec	GBytes	US <u>MIPkts</u>	-EDT (UTC-4) Drops	Discards	Errors
	Avg	Avg /Max					
In	385(19.414%)	459 / 1,405	5 7,789	1,161	0(0.000%)	0(0.000%)	12,239(0.001%)
Out	1,471(74.118%)	379/548	29,736	957	92,987,262(9.484%)	0(0.000%)	11(0.000%)
Runts	Giants	CRC	Frame	Overrun	Ignored	Abort	Collisions
0	38	11894	6	27	1761	318	0
95 percentile 90 percent	le <u>Over 95</u> 9	<u>⁄o</u>	<u>Over 90</u>	<u>%</u>	<u>Over 85%</u>	Over 8	<u>0%</u>
In 42% 33%	0s(0.000%	6)	0s(0.000	%)	0s(0.000%)	0s(0.00	0%)
Out 97% 97%	10d 14h 0m 0s(3	5.327%) 160	d 0h 0m 0s(5	3.408%)	18d 12h 0m 0s(61.752%)	19d 6h 0m 0s	(64.256%)

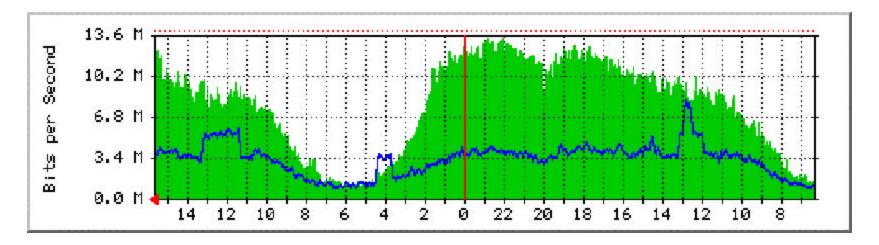
	Average utilization is over 80%		Input	Input packets drop
Interface is DOWN	Average utilization is over 90%	Packet drop is over 2%	Output	Output packets drop

Serial5/0/2 Speed 1,984 Available: 29d 23h 0m 0s(100.00%)								0	
2	definitions		KBits/Sec Avg	Pkts/sec Avg/Max	<u>KBytes</u>	KPkts	Drops	Discards	Errors
	In		0(0.000%)	0/0	2,574	0	0(NaN%)	0(NaN%)	41,776(Inf%)
	Out		1,437(72.406%)	343/521	29,049,580,600	866,921	73,720,769(8.304	%) 0(0.000%)	5(0.000%)
	Runts		Giants	CRC	Frame	Overrun	Ignored	Abort	Collisions
	0		0	36310	0	0	2	5466	0
	95 percentile	90 percentil	e Over 95	i%	Over 90%		Over 85%	Over 80%	
In	0%	0%	0s(0.000		0s(0.000%)		0s(0.000%)	0s(0.000%)	
Out	97%	97%				4%) 18d 6h 0m 0s(60.918%) 19d 0h 0m			

Interface is DOWN Average utilization is over 90% Packet drop is over 2%

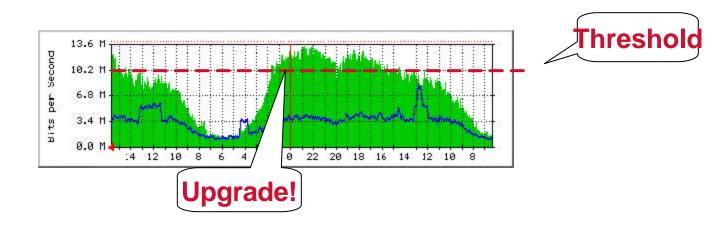
Output

Output packets drop


Serial4. Speed 1 <u>Available</u> : 29d 23h (,984	.00%)	Prom 04-01-2000 00:00:00 to 04-30-2000 23:59:59 1007						1190 	
definiti	definitions				<u>sec</u> Max	GBytes	KPkts	Drops	Discards	Errors
In			3(0.156%)	3/4	99	62	7,944	0(0.000%)	0(0.000%)	119,501(1.469%)
Ou	t		1,333(67.178%)	3387	545	26,952	853,237	94,987,097(10.872%)	0(0.000%)	6(0.000%)
Run	ts		Giants	CR	<u>C</u>	Frame	Overrun	Ignored	Abort	Collisions
0			0	8898	37	0	3	0	30511	0
<u>95 per</u>	entile 90	percentil	e <u>Over 95</u> 9	<u>/o</u>	<u>6 Over 90%</u>			<u>Over 85%</u>	<u>Over</u>	80%
In 09	6	0%	0\$(0.000	6)		0s(0.000)%)	0s(0.000%)	0s(0.0	00%)
Out 97	Out 97% 97% 10d 8h 0m 0s(34.492%)			4.492%)	11d	18h 0m 0s	(39.221%)	12d 16h 0m 0s(42.281%)	13d 12h 0m ()s(45.063%)

Fundamental Tools are Cheap!

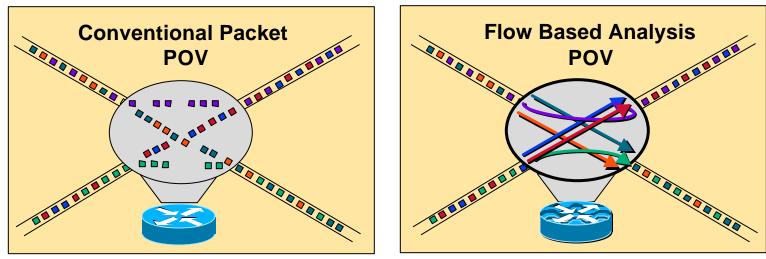
- The tools to create a simple network manage system that will give an ISP the basics comprise of the following:
 - PC with LINUX (free UNIX)
 - ✓ CMU SNMP (free SNMP)
 - ✓ PERL5 (free UNIX script language)
 - ✓ GNU Plot (free graphic plot tool)
 - Printer


Fundamental Tools are Cheap!

Example of what can be done with another Shareware tool - MRTG

Fundamental Tools allow for the Baseline!

- Baseline Quality Levels are critical for any ISP Server.
 - Average Utilization and Packet Loss need to be monitored on the entire network.
 - QoS Threshold need to be set and acted on to maintain any sort of foundation to build advanced IP services. This is *ISP 101* which most new ISPs forget!
 - ✓ All you need is SNMP! It's not rocket science.



Limitations of SNMP and RMON

- SNMP and RMON will tell you what is happening on the network (I.e. load, PPS, packet drops).
- SNMP and RMON will not tell you who is doing what to where and when.
- For that sort of details, TCP/IP Flow Based Analysis is needed.

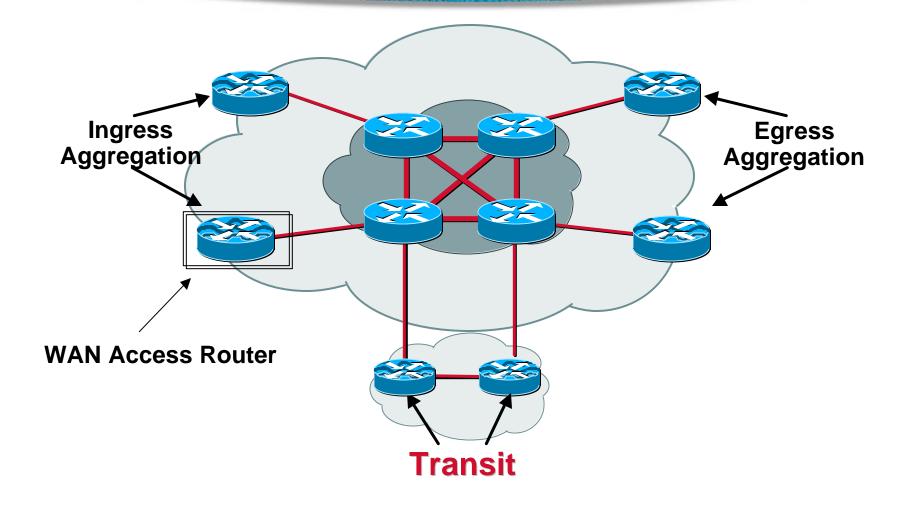
Flow Based Analysis

Connectionless IP But... The Network Is Full of Flows (Conversations)

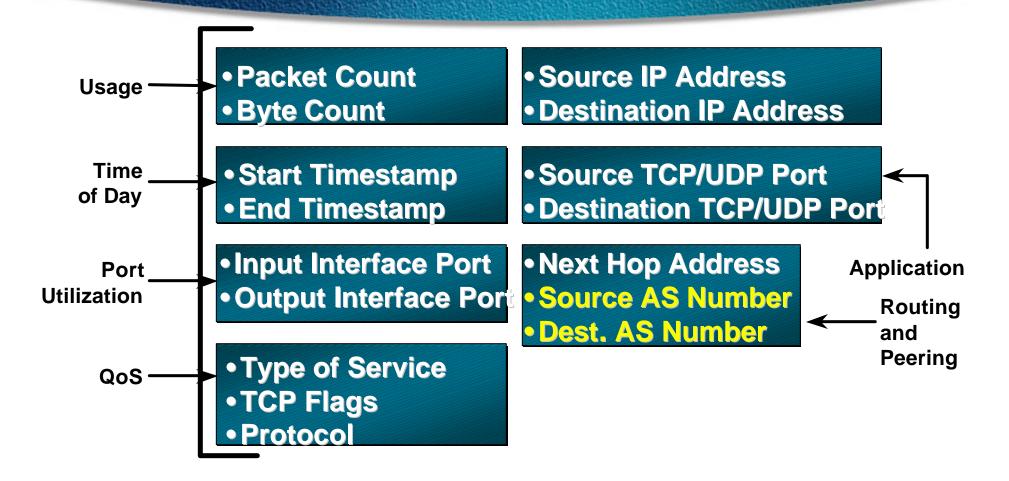
- Flows are Unidirectional
- Flows are Granular
 - IP address and app. port# pairs
 - (TOS/Protocol/Interface)

www.cisco.com

Flow Based Analysis


- Key IETF work:
 - Real Time Traffic Flow (RTFM) working group
 - http://www.auckland.ac.nz/net/Internet /rtfm/
 - IP Provider Metrics (IPPM)
- Public Domain and Commercial Tools now available.

Flow Based Analysis


Key Tools Used Today

- NetScarf Global and Regional Internet Analysis project (http://www.merit.edu/~netscarf)
- Traffic Flow Analysis NLANR (http://www.nlanr.net)
- NetFlow Analysis and IP switching technology build into Cisco's IOS.
- NeTraMet Free Flow analysis software. (http://www.auckland.ac.nz/net/Accounting/ntm.Release .note.html)
- → Many new Netflow based commercial tools

Flow Activation Locations

NetFlow Data Record (V5)

Netflow Empowerment

Before

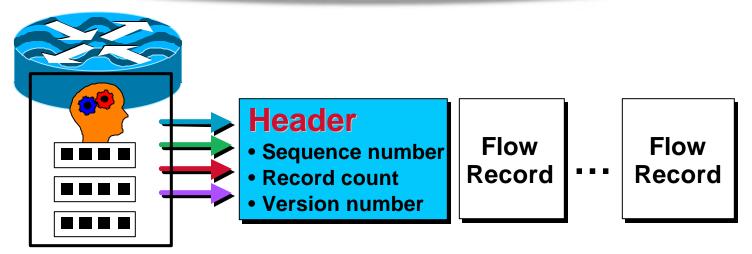
- Flat Rate Charging
- ✓ SNMP Volume Charging
- Time Based Dial-up Charging
- No data on where you customer go on the Net

With Netflow

- Detailed Volume Charging
- ✓ QoS Charging
- Application Based Charging
- Distance Based
 Charging
- ✓ Time of Day Charging
- Details on where and what you customers are doing on the Net

NetFlow Switching Statistics

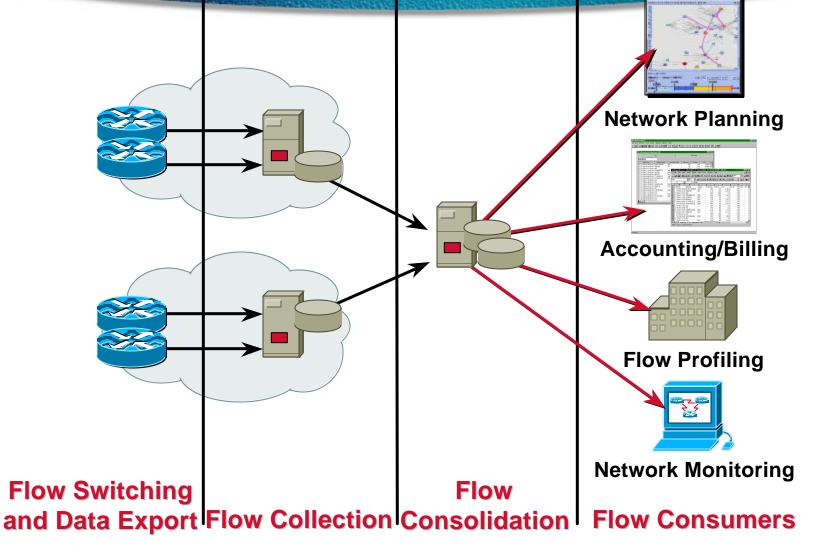
NetFlow Statistics


IP NetFlow Switching Cache, 29999 active, 2769 inactive, 58411388 added statistics cleared 141949 seconds ago

Protocol		Total Flows	Flows / Sec.	Packets / Flow	Bytes / Pkt	Packets / Sec.	Active Sec / Flow	Idle Sec / Flow
TCP -	Telnet	267,034	1.8	233	75	439.3	182.6	36.5
	FTP	1,030,837	7.2	10	78	76.6	22.6	43.7
	FTPD	554,967	3.9	164	345	641.3	52.7	15.7
	WWW	32,107,858	226.2	15	247	3610.6	13.5	28.1
	SMTP	3,526,231	24.8	13	159	323.1	10.2	23.6
	Х	9,600	0.0	121	129	8.2	148.2	55.1
	BGP	111,096	0.7	14	77	11.5	229.2	61.1
	other	5,729,172	40.3	70	220	2858.1	71.0	41.3
UDP -	TFTP	2,398	0.0	3	62	0.0	13.4	69.5
	DNS	12,875,077	90.7	2	110	195.4	5.4	43.6
	other	1,489,072	10.4	30	293	321.8	28.5	68.7
ICMP		665,771	4.6	13	259	62.8	75.7	66.8
IGMP		5,144	0.0	18	278	0.6	82.4	64.3
IPINIP		4,450	0.0	933	377	29.2	166.7	61.0
IP -	other	2,693	0.0	11	136	0.2	80.8	65.7
TOTAL		58,381,400	411.3	20	227	8579.4	0.0	0.0

Src Intf	Source IP Address	Dest Intf	Dest IP Address	Prt	Src Port	Dest Port	Pkts	Bytes/ / Pkt	Act Sec / Flow	Idle Sec / Flow
Hs3/0 Fd0/0 Hs3/0	204.119.134.49 206.42.156.2 125.160.1.24	Fd0/0 Hs3/0 Fd0/0	142.35.4.36 206.52.126.29 200.246.225.8	6 6 6	0050 0439 BB81	0610 0050 0DB7	1 12 745	44 105 542	0.0 9.1 323.0	0.6 1.0 0.0

- Extensive statistics maintained on L3 device
- Presentation_ID © 1999, Cisco Syste CLI summary traffic characterization

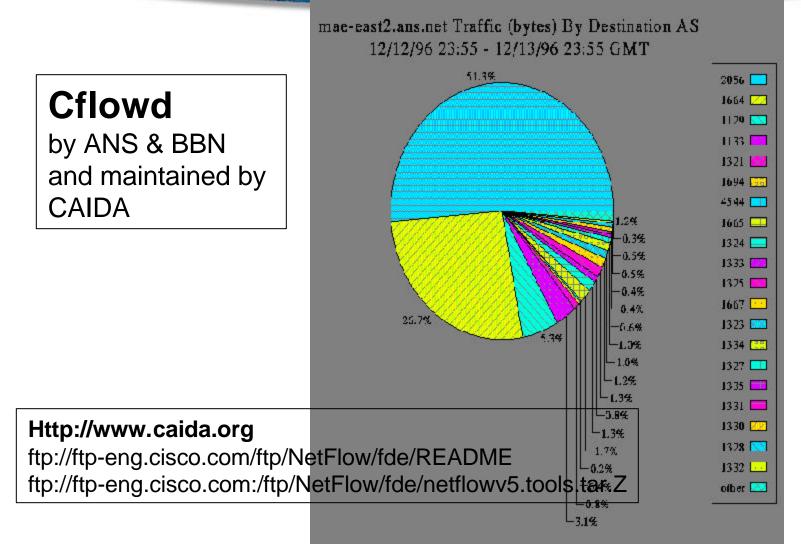

Cache Management and Data Export

NetFlow Cache

Cache manager expires flows No traffic/long life/TCP flags/cache full/etc.
Intelligent cache aging
Router exports groups of expired flows
Export uses UDP datagrams with sequence numbers

NetFlow Metering Infrastructure

Netflow Statistics and RMON


RMON/RMON2

Netflow Statistics

TopN Users TopN Conversations Packet Capture Protocol Distribution Packet Size Distribution Alarm Thresholds and Event Port/Segment Stats History

Packets Bytes S/D IP S/D Port Flow Start Time Flow End Time Input/Output Interfaces Next Router Hop AS #

NetFlow Provides Open Interfaces

NetFlow Provides Open Interfaces

nifty: Nevil's RTFM Network Flow Analyser

File Options Plot Packet Rate vs Flow Duration for Recent Samples pps 500 **NetFlowMet** 200 by Nevil Brownlee 100 -D 50 -6 Uses the work from 20the IETF's Realtime 10 5 **Traffic Flow** Measurement 2 (RTFM) WG 5 10 20 50 2 100 200

14:21:00 Wed 12 Aug 1998, 130.216.1.242 et120, nifty.rules, 60s sample, 1216 active flows, 0.343 kpps

http://www.auckland.ac.nz/net/Accounting/ http://www.auckland.ac.nz/net/Internet/rtfm/ _ 🗆 ×

N

М

500

seconds

NetFlow Distance-Based Accounting

NetFlow Distance-Based Accounting

- General Information page for Cisco Netflow services:
 - / http://www.cisco.com/warp/public/732/netflow/
- Cisco's NetFlow FlowCollector v2.0 and NetFlow FlowAnalyzer v2.0:
 - <u>http://www.cisco.com/warp/public/732/netflow/netan_o</u> <u>v.htm</u>
- Case Study How to implement Netflow in a network. *Traffic Accounting Using Netflow and Cflowd* by Roberto Sabatino (DANTE/TEN-34)

/ http://www.dante.net/pubs/dip/32/32.html

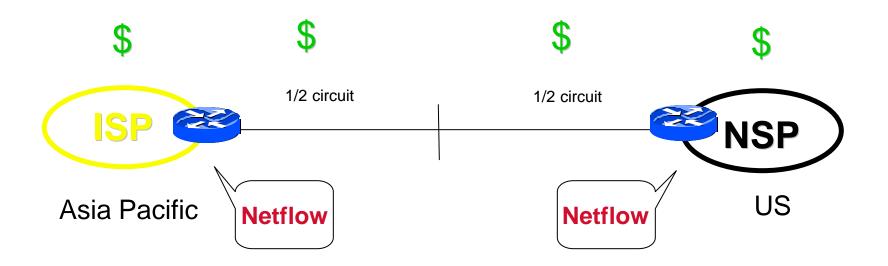
NetFlow Distance-Based Accounting

• 3rd Party Solutions:

- Belle Systems
- Solect
- XACCT Technologies
- Apogee Networks, Inc.
- **V** RODOPI

http://www.belle.dk

http://www.solect.com


http://www.xacct.com

http://www.Apogeenet.com

http://www.rodopi.com

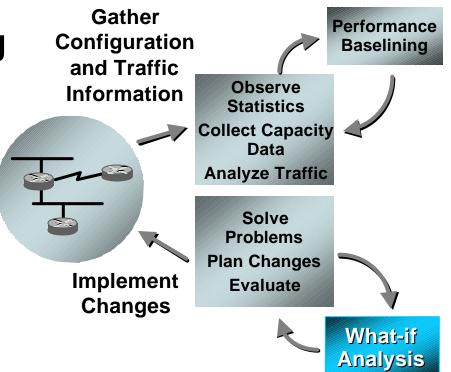
Netflow as a tool

Netflow statistics empowers all ISPs with the ability to know the who, what, where, and how much.

Conclusions

- Aggressive measurement and analysis is critical to an ISPs and the Internet's survival.
- Not enough measurement and actual data analysis is taking place on the Internet. Too many people are speculating with weak data to back up their claims.

Capacity and Performance Best Practices


What-If Analysis

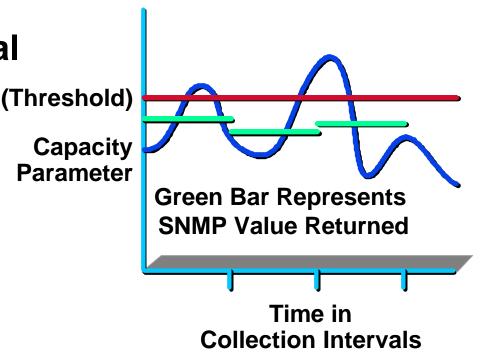
Simulation applications

Lab application modeling

✓ Protocol analyzer,
 WAN emulator, packet
 generator, NETSYS
 performance analyzer

Lab network modeling NVS/NVT, lab network modeling

Service Level Management

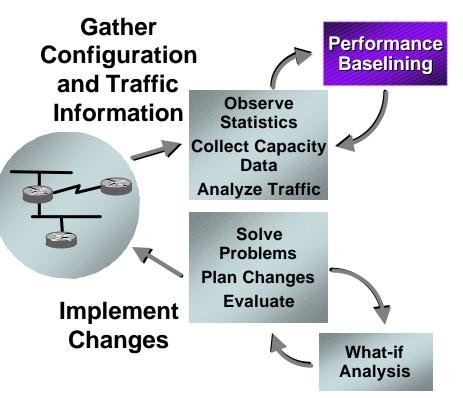

- Define performance requirements
- Define Upgrade criteria by capacity area
- Measure capacity and performance
- Review thresholds and baseline
- Take action!

Service Level Management

Threshold	WAN	LAN		
CPU	75-90%	75-90%		
Link	80-90%	40-90%		
Memory	50%	50%		
Output Queue	200	25		
Buffer Misses	Any	Any		
Broadcast Vol	10/Sec	300/Sec		
FECN/BECN	10/Sec	N/A		

Peak and Average Utilization

- Solution to narrow collection interval
- Low collection interval = high overhead (T
- Recommend >=5 minutes
- Peak values not quite what they seem
- Close to threshold indicates likely exceed condition



Capacity Exception Management

- Alarm critical capacity thresholds (CPU, critical link)
- Develop notification, escalation and action plan for threshold violations
- Take action!

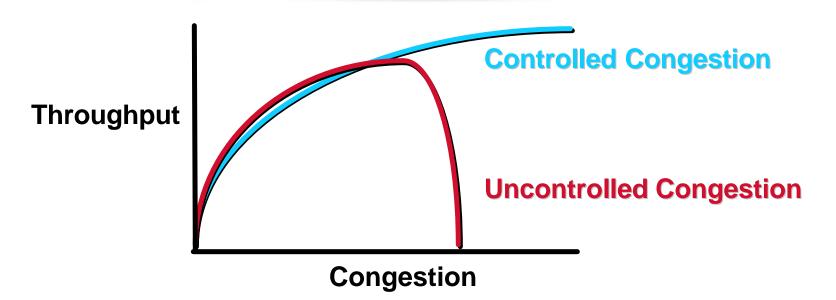
Performance and Capacity Baselining

- Interface utilization
- Device CPU, memory, buffer, I/O utilization
- Network overhead
- Raw performance characteristics
- Monthly or quarterly baseline report

Upgrade Planning

- Understand lead times for circuits, equipment, planning and design
- upgrade criteria based on service level management

QoS Management

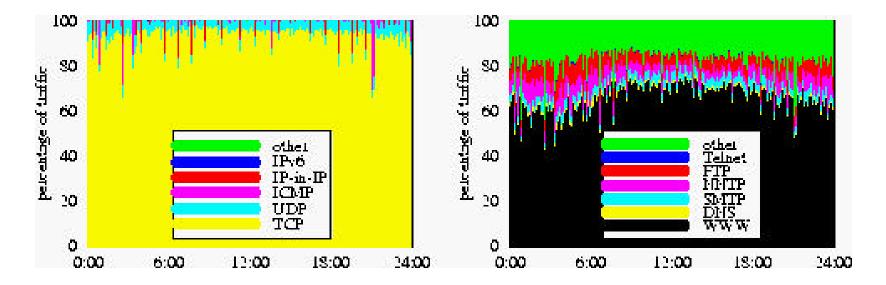

- Prioritize applications by business impact
- Understand networked application behavior (packet size, timeouts, flows, bandwidth requirements)
- Develop QoS management plan

Managing TCP Traffic

Moving Mountains of Data Without Incurring the World Wide Wait

319

Problems with Congestion



- Uncontrolled congestion will seriously degrade system performance
 - The system buffers fill up
 - ✓ Packets are dropped, resulting in retransmissions
 - This causes more packet loss and increased latency
 - The problem builds on itself until the system collapses

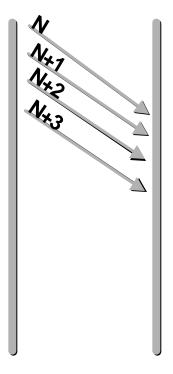
Presentation_ID © 1999, Cisco Systems, Inc.

Backbone Traffic Mix

Transport Breakout TCP Applications

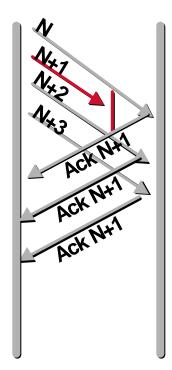
Source: MCI/NSF OC-3MON via http://www.nlanr.net, 1998

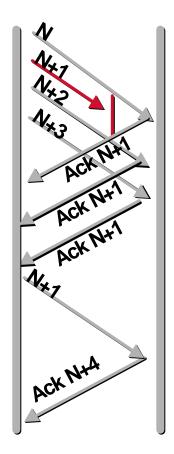
Presentation_ID © 1999, Cisco Systems, Inc.


TCP Technology Issues

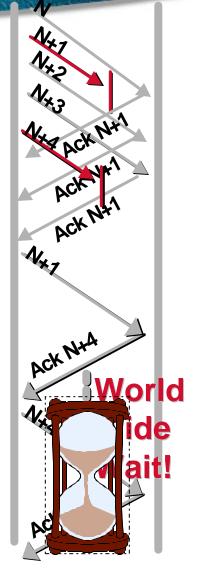
- Single drops communicate from network to sending host
 - "You need to slow down"
- Multiple drops in round trip trigger time-outs
 - "Something bad happened out here"

Behavior of a TCP Sender


- Sends as much as credit allows
- Starts credit small
 - Avoid overloading network queues
- Increases credit exponentially


Behavior of a TCP Receiver

- When in receipt of "next message," schedules an ACK
- When in receipt of something else, acknowledges all it can immediately


Sender Response to ACK

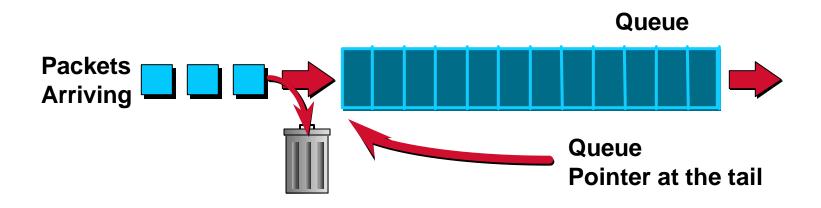
- If ACK acknowledges something
 - Update credit and send
- If not, presume it indicates a lost packet
 - Send first unacknowledged message right away
 - Halve current credit
 - Increase linearly to gauge network throughput

Multiple Drops in TCP

- In the event of multiple drops within the same session:
 - Current TCPs wait for time-out
 - Selective acknowledge may work around (but see INFOCOM '98)
 - New Reno "fast retransmit phase" takes several RTTs to recover

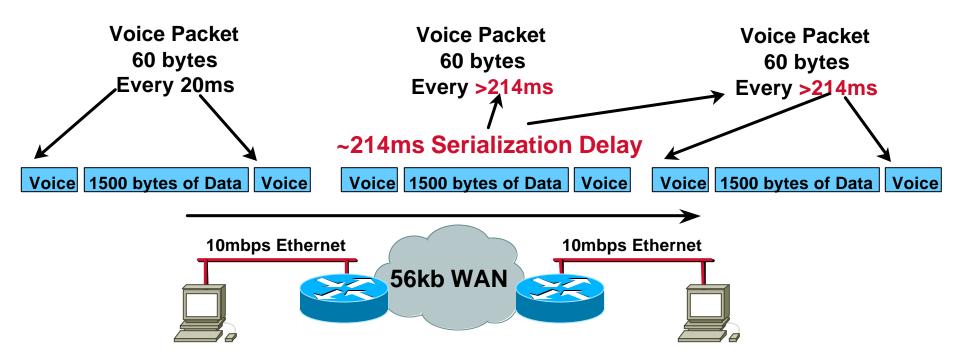
How Can We Make TCP in a Network Act Predictably?

- Predictable amount of traffic in the network:
 - Well-written TCP implementations manage their rates to the available bandwidth
- Router needs to
 - ✓ Provide predictable treatment of packets


Queue delay and drop characteristics

Fundamental FIFO Queue Management Technologies

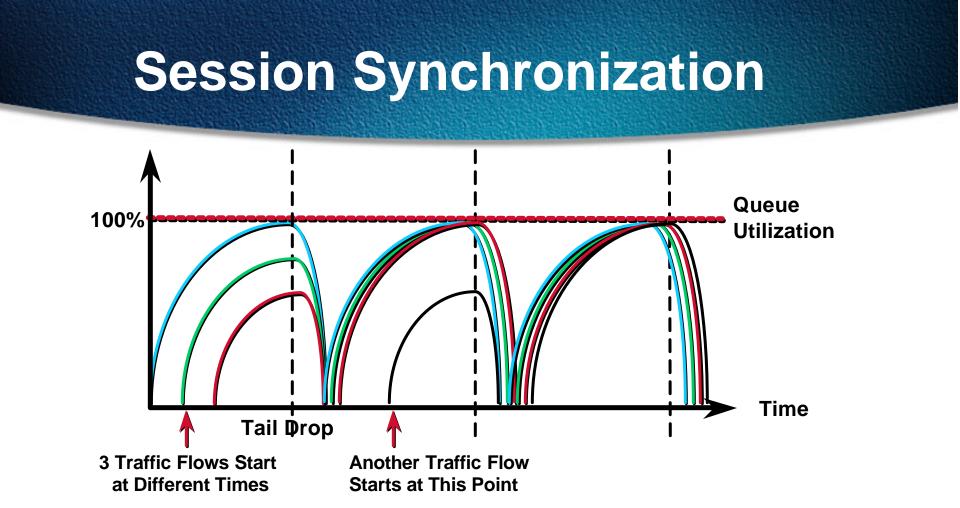
- Tail drop
 - Vetwork standard behavior
 - Causes session synchronization when waves of traffic experience correlated drops
- Random Early Detection (RED)


✓ Random drops used to desynchronize TCP sessions and control rates

Tail Drop

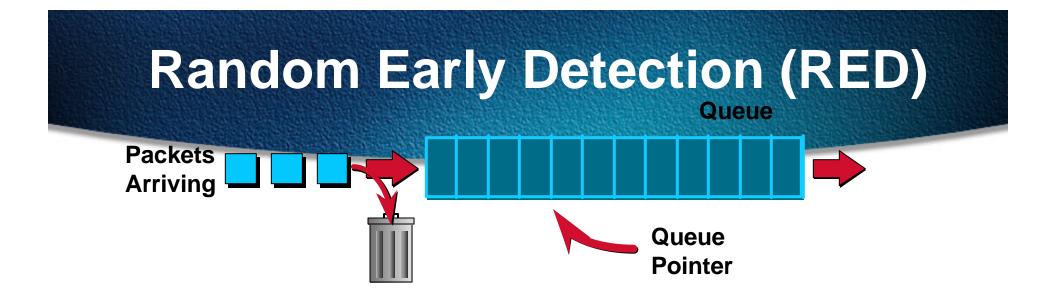
Without RED, when the queue fills up all packets that arrive are dropped—Tail drop

Large Packets "Freeze Out" Voice


- Large packets can cause playback buffer underrun, tail drops
- Jitter or playback buffer can accommodate some delay/delay variation

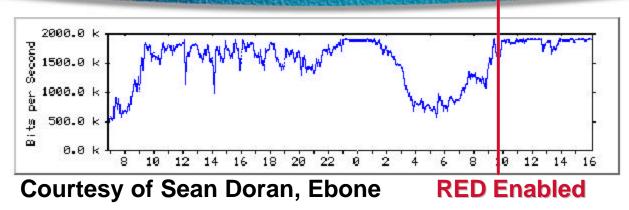
Presentation_ID © 1999, Cisco Systems, Inc.

Session Synchronization


- Session synchronization results from synchronized losses
- Tail drop from waves of traffic synchronizes losses

- TCP is a sliding window protocol that uses self-clocking to adjust its use of the network to match available bandwidth using slow-start and congestion avoidance algorithm
- Session synchronisation is when many TCP connections go through TCP Slow-Start mode at the same time

Presentation_ID © 1999, Cisco Systems, Inc.

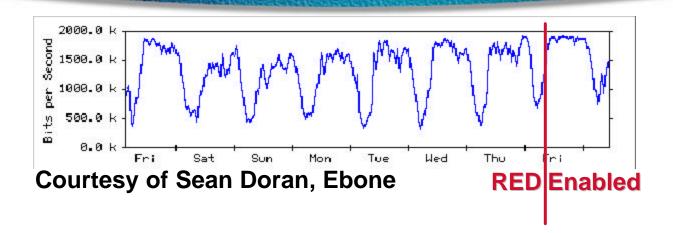


With RED, as oppose to doing a tail drop,

the router monitors the average queue size and using randomization it chooses connections to notify that a congestion is impending

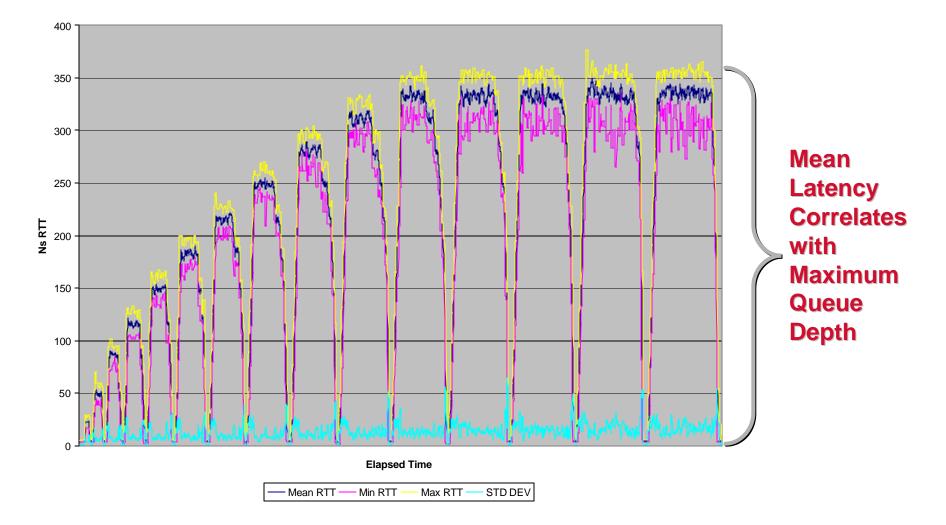
Presentation Note: Avg. queue size is not an

Effect of Random Early Detection

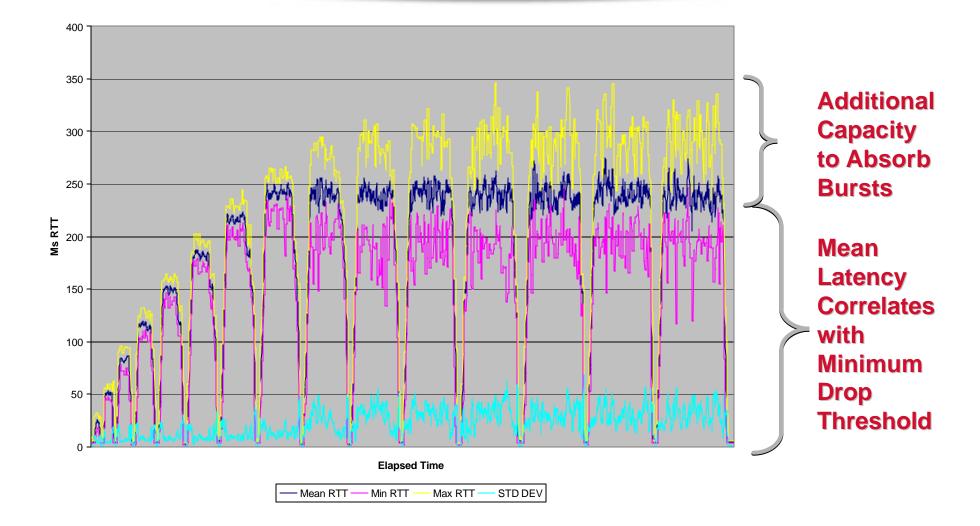


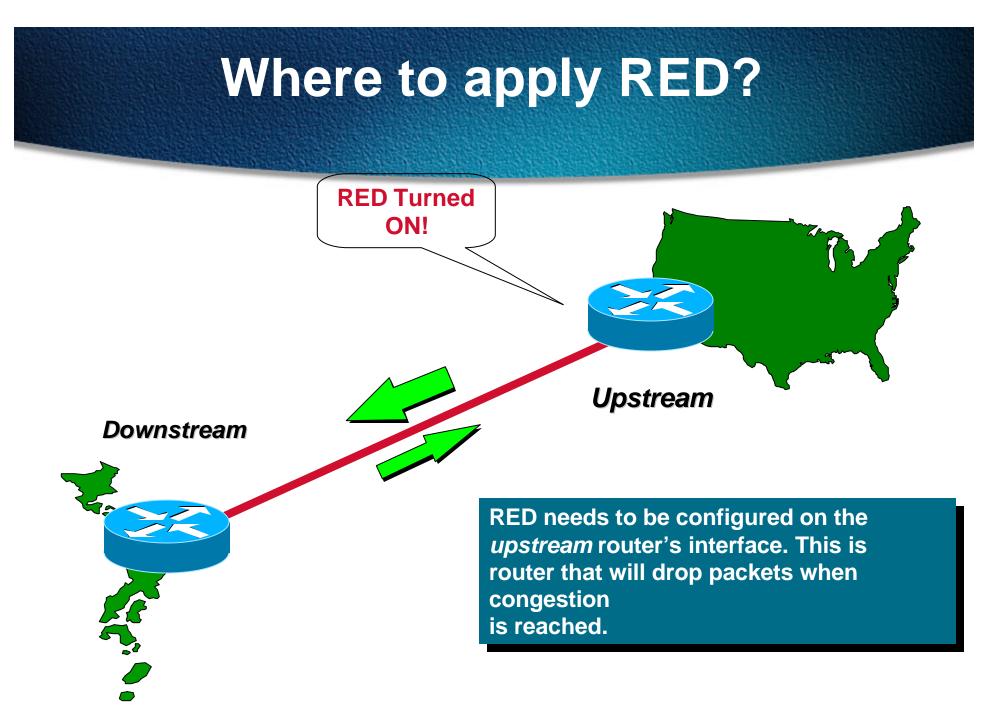
One day, below 100% throughput

✓ Simple FIFO with tail drop


- Starting 10:00 second day, 100% throughput
 - Random Early Detection enabled

Was that a Fluke?




- No, here's what happened that week...
- Session synchronization reduced throughput until RED enabled

FIFO Traffic Timings

RED Traffic Timings

Applying RED/WRED

Enabling WRED

/ [no] random-detect <weight-constant>

weight-constant = <1-16> is an integer used in weighted average to mean 2^weigh-constant. 10 is the default.

Tuning weight constant affects loss rate ✓ rule-of-thumb:

- JS-3/OC-3 Links: Value of 10 might achieve ~10^-4 drop rate, recommended for DS-3/OC-3 link.
- T1/E1 Links: Value of 7 might achieve a loss rate around 10⁻
 3.
- Actual recommended value should be determined in real operational network.

Presentation_ID © 1999, Cisco Systems, Inc.

- Normally at most one drop per round trip
- Mean variation in latency bounded by predictable network

TCP Flow Statistics

- >90% of sessions have ten packets each way or less
 - Transaction mode (mail, small web page)
- >80% of all TCP traffic results from <10% of the sessions, in high rate bursts

It is these that we worry about managing

An Interesting Common Fallacy about RED:

- "RED means you will have more drops"
 - Statement derives from observed statistics
- RED means that you will have
 - Closer to 100% utilization of your line
 - Less average delay per packet
- But queuing theory?
 - ✓ As a line approaches 100% utilization, drops will increase, even though served load increases

TCP Traffic Management Issues

- Applications
 - Often have site-specific policy associated with them
 - Traffic often identifiable by port numbers

Sites

Generally identifiable by address prefix or interface traffic is received on

TCP Bandwidth Policy Questions to Answer

- Particular site or application wants at least a certain bandwidth
- Particular site or application wants at most a certain bandwidth
- Particular site or application wants to average about a certain bandwidth

What to look for in an Upstream Provider

Preparation

- List all potential providers
- Get Maps of oceanic cable systems
- Get Maps of satellite foot prints.

What to ask from the prospective providers?

- Network Maps with landing/termination points of your links.
- List of IXPs and Private Peers
- URLs of NOC Pages
- Do they lease routers and/or colocations space?
- Do they have upstream caches?

Presentation_ID © 1999, Cisco Systems, Inc.

Example - Network Map

What to require from the Upstream Provider

- Statistics Page and Weekly Reports
- 24x7 NOC Contacts
- RED or WRED on their router's interface
- CAR ICMP Rates Limits for DoS Protection
- Back-up contingencies in writing.

